Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wheel wear" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A data-driven predictive model of the grinding wheel wear using the neural network approach
Autorzy:
Lezanski, P.
Powiązania:
https://bibliotekanauki.pl/articles/99954.pdf
Data publikacji:
2017
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
grinding wheel wear
remaining useful life
neural network
Opis:
Advanced manufacturing depends on the timely acquisition, distribution, and utilization of information from machines and processes. These activities can improve accuracy and reliability in predicting resource needs and allocation, maintenance scheduling, and remaining service life of equipment. Thus, to model the state of tool wear and next to predict its remaining useful life (RUL) significantly increases the sustainability of manufacturing processes. there are many approaches, methods and theories applied to predictive model building. the proposed paper investigates an artificial neural network (ANN) model to predict the wear propagation process of grinding wheel and to estimate the RUL of the wheel when the extrapolated data reaches a predefined final failure value. The model building framework is based on data collected during external cylindrical plunge grinding. Firstly, usefulness of selected features of the measured process variables to be symptoms of grinding wheel state is experimentally verified. Next, issues related to development of an effective MLP model and its use in prediction of the grinding wheel RUL is discussed.
Źródło:
Journal of Machine Engineering; 2017, 17, 4; 69-82
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effects of process parameters on spindle power consumption in abrasive machining of CoCr alloy
Autorzy:
Brazel, E.
Hanley, R.
O'Donell, G. E.
Powiązania:
https://bibliotekanauki.pl/articles/100023.pdf
Data publikacji:
2011
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
power monitoring
abrasive machining
grinding
taguchi
wheel wear
CBN
Opis:
The production environment requires seamless integration, efficiency and robustness of process monitoring solutions. This research investigates data acquisition on the machine tool through the monitoring of NC kernel data. This approach provides many advantages, particularly in an industrial setting where it may be impractical to install additional sensors for process monitoring. The process investigated is abrasive machining of Cobalt Chrome alloy. Cobalt Chrome alloys are extensively used in the biomedical industry as both femoral and tibial components of prosthetic joints. Abrasive machining or grinding is widely employed as the main method for material removal for these components. Understanding the influence of key variables in such a process is necessary before optimization can be achieved. Significant information can be obtained by utilizing power consumption during machining as a process metric. Power consumption of a spindle during an abrasive machining process of Cobalt Chrome alloy is monitored under various conditions through a machine-NC-based application. The effects of changes in feed rate, wheel speed, depth of cut and tool condition are investigated here through Taguchi experimental design. Experimental results are presented with significant machining variables identified.
Źródło:
Journal of Machine Engineering; 2011, 11, 4; 59-69
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies