Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "methods for training" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Ewolucyjne metody uczenia ukrytych modeli Markowa
Evolutionary methods for training hidden Markov models
Autorzy:
Figielska, E.
Powiązania:
https://bibliotekanauki.pl/articles/91244.pdf
Data publikacji:
2011
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
ukryte modele Markowa
modelowanie statystyczne
metody uczenia
infrastructure subsystem
statistical modeling
methods for training
Opis:
Ukryte modele Markowa stanowią narzędzie modelowania statystycznego wykorzystywane do analizy i przewidywania zjawisk o charakterze sekwencji zdarzeń występujących na przykład w rozpoznawaniu mowy i gestów oraz modelowaniu sekwencji biologicznych. Aby ukryty model Markowa mógł z powodzeniem zostać zastosowany w praktyce, konieczne jest określenie jego topologii i wyznaczenie wartości jego parametrów. Istniejące metody klasyczne nie zawsze są zdolne do dostarczenia wystarczająco dobrych modeli. Dlatego też, w ostatnich latach obserwuje się wzrost zainteresowania możliwością stosowania innych technik, zwłaszcza opartych na mechanizmach stochastycznych. W artykule przedstawione są sposoby wykorzystania w procesie budowy ukrytych modeli Markowa metod ewolucyjnych. Przeprowadzona jest również ocena jakości otrzymywanych w ten sposób modeli.
Hidden Markov models (HMMs) are a statistical tool for analyzing and modeling time-series data. They have been successfully used in many areas requiring time-series analysis for example in speech recognition, DNA sequence analysis or forecasts of stock prices. To use a HMM in practice, the topology and the values of its parameters have to be determined. The existing classical methods for HMM training are not always able to provide sufficiently good models. Therefore, in recent years, we observe an increasing interest in developing other methods for HMM training, especially ones involving evolutionary mechanisms. This paper presents how evolutionary methods can be used to build HMMs. The quality of the obtained in this way HMMs is also discussed.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2011, 5, 5; 63-74
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies