Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "barite" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Geochemistry and fluid-inclusion microthermometry of the Farsesh barite deposit, Iran
Autorzy:
Zarasvandi, A.
Zaheri, N.
Pourkaseb, H.
Chrachi, A.
Bagheri, H.
Powiązania:
https://bibliotekanauki.pl/articles/94476.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
hydrothermal barite
ICP-MS analysis
geochemistry
fluid inclusions
Sanandaj-Sirjan zone
Iran
hydrotermalny baryt
ICP-MS
geochemia
inkluzje fluidalne
Opis:
The Permian carbonate-hosted Farsesh barite deposit is located southeast of the City of Aligudarz in the prov-ince of Lorestan, Iran. Structurally, this deposit lies in the Zagros metallogenic belt and the Sanandaj-Sirjan Zone. Barite mineralisations occur as open-space filling veins, and as massive and replacement ores along fractures, faults and shear zones of the Permian carbonate host rocks. In order to determine the structure, in addition to pe-trographic and fluid-inclusions studies, an ICP-MS analysis was carried out in order to measure the major as well as the trace and rare earth elements. The Farsesh barite deposit has a simple mineralogy, of which barite is the main mineral, followed by calcite, dolomite, quartz, and opaque minerals such as Fe-oxides. Replacement of bar-ite by calcite is common and is more frequent than space-filling mineralisation. Sulphide minerals are minor and mainly consist of chalcopyrite and pyrite, which are altered by weathering to covellite, malachite and azurite. Petrographic analysis and micro-thermometry were carried out on the two-phase liquid/vapour inclu-sions in ellipsoidal or irregularly shaped minerals ranging in size from 5–10 μm. The measurements were conducted on fluid inclusions during the heating and subsequent homogenisation in the liquid phase. The low homogenisation temperatures (200–125°C) and low to moderate salinity (4.2–20 eq wt% NaCl) in-dicate that the barite had precipitated from hydrothermal basinal water with low to moderate salinity. It appears from the major and trace elements that geochemical features such as Ba and Sr enrichment in the barite samples was accompanied by depletion of Pb, Zn, Hg, Cu and Sb. The geochemistry of the rare earth elements, such as low ΣREE concentrations, LREE-enrichment chondrite-normalised REE patterns, the negative Ce and positive Eu anomalies, the low Ce/La ratio and the positive La and Gd anomalies, suggest that the Farsesh barite was deposited from hydrothermally influenced sea water. The Farsesh deposit contains low-temperature hydrothermal barite. The scatter plots of the barite (close to sea water) in different areas on the CeN/SmN versus CeN/YbN diagram support the possibility that the barite was formed from seawater-bearing hydrothermal fluids.
Źródło:
Geologos; 2014, 20, 3; 201-214
1426-8981
2080-6574
Pojawia się w:
Geologos
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characteristics of the Ahmadabad hematite/barite deposit, Iran – studies of mineralogy, geochemistry and fluid inclusions
Autorzy:
Babaei, A. H.
Ganji, A.
Powiązania:
https://bibliotekanauki.pl/articles/94546.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
geochemistry
trace elements
rare earth elements
Semnan
geochemia
pierwiastki śladowe
pierwiastki ziem rzadkich
REE
Opis:
The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 – Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.
Źródło:
Geologos; 2018, 24, 1; 55-68
1426-8981
2080-6574
Pojawia się w:
Geologos
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies