Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hyper-V" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Hyper BCI-algebras
Autorzy:
Xin, Xiao
Powiązania:
https://bibliotekanauki.pl/articles/729165.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hyper BCI-algebra
hyper group
hyper $H_{v}$-group
Opis:
We introduce the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra, and investigate some related properties. Moreover we introduce a hyper BCI-ideal, weak hyper BCI-ideal, strong hyper BCI-ideal and reflexive hyper BCI-ideal in hyper BCI-algebras, and give some relations among these hyper BCI-ideals. Finally we discuss the relations between hyper BCI-algebras and hyper groups, and between hyper BCI-algebras and hyper $H_{v}$-groups.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2006, 26, 1; 5-19
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2 × ℤ2 -Cordial Cycle-Free Hypergraphs
Autorzy:
Cichacz, Sylwia
Görlich, Agnieszka
Tuza, Zsolt
Powiązania:
https://bibliotekanauki.pl/articles/32361757.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
V 4 -cordial graph
hypergraph
labeling of hypergraph
hyper-tree
Opis:
Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. The problem of A-cordial labelings of graphs can be naturally extended for hypergraphs. It was shown that not every 2-uniform hypertree (i.e., tree) admits a ℤ2 × ℤ2-cordial labeling [8]. The situation changes if we consider p-uniform hypertrees for a bigger p. We prove that a p-uniform hypertree is ℤ2 × ℤ2-cordial for any p > 2, and so is every path hypergraph in which all edges have size at least 3. The property is not valid universally in the class of hypergraphs of maximum degree 1, for which we provide a necessary and sufficient condition.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1021-1040
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies