Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "optimal method" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Convergence of the Lagrange-Newton Method for Optimal Control Problems
Autorzy:
Malanowski, K. D.
Powiązania:
https://bibliotekanauki.pl/articles/907971.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie optymalne
ograniczenia mieszane
metoda Lagrange'a-Newtona
optimal control
nonlinear ODEs
mixed constraints
Lagrange-Newton method
Opis:
Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 4; 531-540
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A quadratic optimal control problem for a class of linear discrete distributed systems
Autorzy:
Rachik, M.
Lhous, M.
El Kahlaoui, O.
Labriji, E.
Jourhmane, H.
Powiązania:
https://bibliotekanauki.pl/articles/908382.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system dyskretny
rozproszony system komputerowy
system liniowy
sterowanie optymalne
discrete distributed system
Hilbert uniqueness method
linear system
optimal control
Opis:
A linear quadratic optimal control problem for a class of discrete distributed systems is analyzed. To solve this problem, we introduce an adequate topology and establish that optimal control can be determined though an inversion of the appropriate isomorphism. An example and a numerical approach are given.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 4; 431-440
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation
Autorzy:
Hendy, Ahmed S.
Macías-Díaz, Jorge E.
Powiązania:
https://bibliotekanauki.pl/articles/330834.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
generalized Gross–Pitaevskii system
Riesz fractional diffusion
Sobolev inequality
conservative method
optimal error bounds
równanie Grossa-Pitaevskiego
nierówność Sobolewa
metoda konserwatywna
optymalna granica błędu
Opis:
The present work departs from an extended form of the classical multi-dimensional Gross–Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross–Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 4; 713-723
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov-Poisson equation
Autorzy:
Campos Pinto, M.
Powiązania:
https://bibliotekanauki.pl/articles/929689.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda Lagrangiana
oszacowanie błędu
szybkość zbieżności
fully adaptive scheme
semi-Lagrangian method
Vlasov-Poisson equation
error estimate
convergence rates
optimal transport of adaptive multiscale meshes
Opis:
This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1 + 1)- dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in (Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error estimate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method, which is a new algorithm to transport multiscale meshes along a smooth flow, in a way that can be said optimal in the sense that it satisfies both accuracy and complexity estimates which are likely to lead to optimal convergence rates for the whole numerical scheme. From the regularity analysis of the numerical solution and how it gets transported by the numerical flow, it is shown that the accuracy of our scheme is monitored by a prescribed tolerance parameter \epsilon which represents the local interpolation error at each time step. As a consequence, the numerical solutions are proved to converge in L\infty towards the exact ones as \epsilon and \delta t tend to zero, and in addition to the numerical tests presented in (Campos Pinto and Mehrenberger, 2007), some complexity bounds are established which are likely to prove the optimality of the meshes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 3; 351-359
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies