Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear discriminant analysis" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse
Autorzy:
Górecki, T.
Łuczak, M.
Powiązania:
https://bibliotekanauki.pl/articles/330828.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
linear discriminant analysis
Moore–Penrose pseudoinverse
machine learning
liniowa analiza dyskryminacji
pseudoodwrotność Moore–Penrose
uczenie maszynowe
Opis:
The Linear Discriminant Analysis (LDA) technique is an important and well-developed area of classification, and to date many linear (and also nonlinear) discrimination methods have been put forward. A complication in applying LDA to real data occurs when the number of features exceeds that of observations. In this case, the covariance estimates do not have full rank, and thus cannot be inverted. There are a number of ways to deal with this problem. In this paper, we propose improving LDA in this area, and we present a new approach which uses a generalization of the Moore–Penrose pseudoinverse to remove this weakness. Our new approach, in addition to managing the problem of inverting the covariance matrix, significantly improves the quality of classification, also on data sets where we can invert the covariance matrix. Experimental results on various data sets demonstrate that our improvements to LDA are efficient and our approach outperforms LDA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 2; 463-471
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of correlation based dimension reduction methods
Autorzy:
Shin, Y. J.
Park, C. H.
Powiązania:
https://bibliotekanauki.pl/articles/907508.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza korelacyjna
redukcja wymiaru
liniowa analiza dyskryminacji
canonical correlation analysis
dimension reduction
discriminative canonical correlation analysis
linear discriminant analysis
Opis:
Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are different in that DCCA is a supervised method utilizing class label information, while CCA is an unsupervised method. It has been shown that the classification performance of DCCA is superior to that of CCA due to the discriminative power using class label information. On the other hand, Linear Discriminant Analysis (LDA) is a supervised dimension reduction method and it is known as a special case of CCA. In this paper, we analyze the relationship between DCCA and LDA, showing that the projective directions by DCCA are equal to the ones obtained from LDA with respect to an orthogonal transformation. Using the relation with LDA, we propose a new method that can enhance the performance of DCCA. The experimental results show that the proposed method exhibits better classification performance than the original DCCA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2011, 21, 3; 549-558
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies