Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "evolution equation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
The Asymptotical Stability of a Dynamic System With Structural Damping
Autorzy:
Hou, X.
Powiązania:
https://bibliotekanauki.pl/articles/908219.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
matematyka
dynamic systems
evolution equation
asymptotic stability
Opis:
A dynamic system with structural damping described by partial differential equations is investigated. The system is first converted to an abstract evolution equation in an appropriate Hilbert space, and the spectral and semigroup properties of the system operator are discussed. Finally, the well-posedness and the asymptotical stability of the system are obtained by means of a semigroup of linear operators.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 2; 131-138
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of randomness on the stability of capillary gravity waves in the presence of air flowing over water
Autorzy:
Majumder, D. P.
Dhar, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/265777.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
capillary gravity waves
randomness
evolution equation
instability
fala grawitacyjna
przypadkowość
niestabilność
Opis:
A nonlinear spectral transport equation for the narrow band Gaussian random surface wave trains is derived from a fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves. The effect of randomness on the stability of deep water capillary gravity waves in the presence of air flowing over water is investigated. The stability is then considered for an initial homogenous wave spectrum having a simple normal form to small oblique long wave length perturbations for a range of spectral widths. An expression for the growth rate of instability is obtained; in which a higher order contribution comes from the fourth order term in the evolution equation, which is responsible for wave induced mean flow. This higher order contribution produces a decrease in the growth rate. The growth rate of instability is found to decrease with the increase of spectral width and the instability disappears if the spectral width increases beyond a certain critical value, which is not influenced by the fourth order term in the evolution equation.
Źródło:
International Journal of Applied Mechanics and Engineering; 2015, 20, 4; 835-855
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of capillarity on fourth order nonlinear evolution equation for two Stokes wave trains in deep water in the presence of air flowing over water
Autorzy:
Dhar, A. K.
Mondal, J.
Powiązania:
https://bibliotekanauki.pl/articles/265884.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
nonlinear evolution equation
surface capillary gravity wave
stability
grawitacja
fala kapilarna
równania nieliniowe
Opis:
Fourth order nonlinear evolution equations, which are a good starting point for the study of nonlinear water waves, are derived for deep water surface capillary gravity waves in the presence of second waves in which air is blowing over water. Here it is assumed that the space variation of the amplitude takes place only in a direction along which the group velocity projection of the two waves overlap. A stability analysis is made for a uniform wave train in the presence of a second wave train. Graphs are plotted for the maximum growth rate of instability wave number at marginal stability and wave number separation of fastest growing sideband component against wave steepness. Significant improvements are noticed from the results obtained from the two coupled third order nonlinear Schrödinger equations.
Źródło:
International Journal of Applied Mechanics and Engineering; 2015, 20, 2; 267-282
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fourth order nonlinear evolution equation for interfacial gravity waves in the presence of air flowing over water and a basic current shear
Autorzy:
Majumder, D. P.
Dhar, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/265668.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
nonlinear evolution equation
basic current shear
Stokes gravity wave
równania nieliniowe
przepływy Stokes'a
grawitacja
Opis:
A fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves as first pointed out by Dysthe (1979) is derived for gravity waves propagating at the interface of two superposed fluids of infinite depth in the presence of air flowing over water and a basic current shear. A stability analysis is then made for a uniform Stokes gravity wave train. Graphs are plotted for the maximum growth rate of instability and for wave number at marginal stability against wave steepness for different values of air flow velocity and basic current shears. Significant deviations are noticed from the results obtained from the third order evolution equation, which is the nonlinear Schrödinger equation.
Źródło:
International Journal of Applied Mechanics and Engineering; 2015, 20, 3; 517-530
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies