Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "error estimate" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Numerical Analysis and Simulations of Quasistatic Frictionless Contact Problems
Autorzy:
Fernandez Garcia, J. R.
Han, W.
Shillor, M.
Sofonea, M.
Powiązania:
https://bibliotekanauki.pl/articles/908327.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza numeryczna
quasistatyka
metoda elementów skończonych
quasistatic contact
Signorini condition
normal compliance
viscoplasticity
variational inequalitie
error estimate
finite element method (FEM)
numerical approximation
Opis:
A summary of recent results concerning the modelling as well as the variational and numerical analysis of frictionless contact problems for viscoplastic materials are presented. The contact is modelled with the Signorini or normal compliance conditions. Error estimates for the fully discrete numerical scheme are described, and numerical simulations based on these schemes are reported.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 1; 205-222
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov-Poisson equation
Autorzy:
Campos Pinto, M.
Powiązania:
https://bibliotekanauki.pl/articles/929689.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda Lagrangiana
oszacowanie błędu
szybkość zbieżności
fully adaptive scheme
semi-Lagrangian method
Vlasov-Poisson equation
error estimate
convergence rates
optimal transport of adaptive multiscale meshes
Opis:
This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1 + 1)- dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in (Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error estimate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method, which is a new algorithm to transport multiscale meshes along a smooth flow, in a way that can be said optimal in the sense that it satisfies both accuracy and complexity estimates which are likely to lead to optimal convergence rates for the whole numerical scheme. From the regularity analysis of the numerical solution and how it gets transported by the numerical flow, it is shown that the accuracy of our scheme is monitored by a prescribed tolerance parameter \epsilon which represents the local interpolation error at each time step. As a consequence, the numerical solutions are proved to converge in L\infty towards the exact ones as \epsilon and \delta t tend to zero, and in addition to the numerical tests presented in (Campos Pinto and Mehrenberger, 2007), some complexity bounds are established which are likely to prove the optimality of the meshes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 3; 351-359
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An analytical and numerical approach to a bilateral contact problem with nonmonotone friction
Autorzy:
Barboteu, M.
Bartosz, K.
Kalita, P.
Powiązania:
https://bibliotekanauki.pl/articles/330898.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
linearly elastic material
bilateral contact
nonmonotone friction law
hemivariational inequality
finite element method
error estimate
nonconvex proximal bundle method
quasi augmented Lagrangian method
Newton method
metoda elementów skończonych
szacowanie błędu
metoda Lagrangiana
metoda Newtona
Opis:
We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach is based on the nonconvex proximal bundle method, whereas the second one deals with the approximation of a nonconvex problem by a sequence of nonsmooth convex programming problems. Some numerical experiments are realized to compare the two numerical approaches.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 2; 263-276
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Revisiting the optimal probability estimator from small samples for data mining
Autorzy:
Cestnik, Bojan
Powiązania:
https://bibliotekanauki.pl/articles/330350.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
probability estimation
small sample
minimal error
m-estimate
estymacja prawdopodobieństwa
mała próbka
błąd minimalny
Opis:
Estimation of probabilities from empirical data samples has drawn close attention in the scientific community and has been identified as a crucial phase in many machine learning and knowledge discovery research projects and applications. In addition to trivial and straightforward estimation with relative frequency, more elaborated probability estimation methods from small samples were proposed and applied in practice (e.g., Laplace’s rule, the m-estimate). Piegat and Landowski (2012) proposed a novel probability estimation method from small samples Eph√2 that is optimal according to the mean absolute error of the estimation result. In this paper we show that, even though the articulation of Piegat’s formula seems different, it is in fact a special case of the m-estimate, where pa = 1/2 and m = √2. In the context of an experimental framework, we present an in-depth analysis of several probability estimation methods with respect to their mean absolute errors and demonstrate their potential advantages and disadvantages. We extend the analysis from single instance samples to samples with a moderate number of instances. We define small samples for the purpose of estimating probabilities as samples containing either less than four successes or less than four failures and justify the definition by analysing probability estimation errors on various sample sizes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 4; 783-796
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies