Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Model regresji" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Hedonic Pricing Model for Real Property Valuation Via GIS - a review
Autorzy:
Aladwan, Zubeida
Ahamad, Mohd Sanusi S.
Powiązania:
https://bibliotekanauki.pl/articles/395973.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
real property valuation
building variables
regression analysis
hedonic pricing model
GIS
wycena nieruchomości
budowanie zmiennych
analiza regresji
model wyceny
Opis:
Hedonic pricing models in real property valuation have been frequently applied in many research studies and projects since it was introduced by Rosen in 1974. The development of Geographic Information Systems (GIS) in the recent decades has gradually supports the usage of hedonic model in the spatial data pricing model studies. Beside the basic advantages of GIS to position properties in terms of their geographic coordinates, it has the capabilities of dealing with reasonable amount of data, and wide choices of analysis that make it powerful tool to facilitate the building and implementation of the hedonic models within its framework. Many studies have employed GIS in real property valuation in their present work and for the future prediction. This paper reviews the works of literature on the GIS applications in the real property valuation employing the hedonic pricing models.
Źródło:
Civil and Environmental Engineering Reports; 2019, 29, 3; 34-37
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Linear-wavelet networks
Autorzy:
Galvao, R. K. H.
Becerra, V. M.
Calado, J. M. F.
Silva, P. M.
Powiązania:
https://bibliotekanauki.pl/articles/907399.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć falkowa
model nieliniowy
analiza regresji
identyfikacja systemu
wavelet networks
nonlinear models
regression analysis
system identification
Opis:
This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described. For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example involving a simulated fermentation process, it is shown that a linear-wavelet network yields a smaller approximation error when compared with a wavelet network with the same number of regressors. The proposed technique is also applied to the identification of a pressure plant from experimental data. In this case, the results show that the introduction of wavelets considerably improves the prediction ability of a linear model. Standard errors on the estimated model coefficients are also calculated to assess the numerical conditioning of the identification process.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 2; 221-232
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilities of discrepancy between minima of cross-validation, Vapnik bounds and true risks
Autorzy:
Klęsk, P.
Powiązania:
https://bibliotekanauki.pl/articles/929593.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
estymacja regresji
walidacja krzyżowa
teoria uczenia się
generalizacja
teoria statystyczna
regression estimation
model comparison
complexity selection
cross-validation
generalization
statistical learning theory
generalization bounds
structural risk minimization
Opis:
Two known approaches to complexity selection are taken under consideration: n-fold cross-validation and structural risk minimization. Obviously, in either approach, a discrepancy between the indicated optimal complexity (indicated as the minimum of a generalization error estimate or a bound) and the genuine minimum of unknown true risks is possible. In the paper, this problem is posed in a novel quantitative way. We state and prove theorems demonstrating how one can calculate pessimistic probabilities of discrepancy between these minima for given for given conditions of an experiment. The probabilities are calculated in terms of all relevant constants: the sample size, the number of cross-validation folds, the capacity of the set of approximating functions and bounds on this set. We report experiments carried out to validate the results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 3; 525-544
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies