Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "IF" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A Fuzzy If-Then Rule-Based Nonlinear Classifier
Autorzy:
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/908190.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
classifier design
fuzzy if-then rules
generalization control
mixture of experts
Opis:
This paper introduces a new classifier design method that is based on a modification of the classical Ho-Kashyap procedure. The proposed method uses the absolute error, rather than the squared error, to design a linear classifier. Additionally, easy control of the generalization ability and robustness to outliers are obtained. Next, an extension to a nonlinear classifier by the mixture-of-experts technique is presented. Each expert is represented by a fuzzy if-then rule in the Takagi-Sugeno-Kang form. Finally, examples are given to demonstrate the validity of the introduced method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 2; 215-223
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Fuzzy System with ε-insensitive Learning of Premises and Consequences of if-then Rules
Autorzy:
Łęski, J. M.
Czogała, T.
Powiązania:
https://bibliotekanauki.pl/articles/908547.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
zdolność uogólnienia
modelowanie rozmyte
fuzzy system
generalization ability
extraction of fuzzy if-then rules
global ε-insensitive learning
local ε-insensitive learning
Opis:
First, a fuzzy system based on if-then rules and with parametric consequences is recalled. Then, it is shown that the global and local ε-insensitive learning of the above fuzzy system may be presented as a combination of both an ε-insensitive gradient method and solving a system of linear inequalities. Examples are given of using the introduced method to design fuzzy models of real-life data. Simulation results show an improvement in the generalization ability of a fuzzy system trained by the new method compared with the traditional and other ε-insensitive learning methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 2; 257-273
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies