Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Xu, L. J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A practical application of kernel-based fuzzy discriminant analysis
Autorzy:
Gao, J. Q.
Fan, L. Y.
Li, L.
Xu, L. Z.
Powiązania:
https://bibliotekanauki.pl/articles/908344.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza dyskryminacyjna
algorytm najbliższego sąsiada
SVD
kernel fuzzy discriminant analysis
fuzzy k-nearest neighbor
QR decomposition
singular value decomposition (SVD)
fuzzy membership matrix
t-test
Opis:
A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value Decomposition (SVD), two different variants, KFDA/QR and KFDA/SVD, of KFDA are obtained. In the proposed method, the membership degree is incorporated into the definition of between-class and within-class scatter matrices to get fuzzy between-class and within-class scatter matrices. The membership degree is obtained by combining the measures of features of samples data. In addition, the effects of employing different measures is investigated from a pure mathematical point of view, and the t-test statistical method is used for comparing the robustness of the learning algorithm. Experimental results on ORL and FERET face databases show that KFDA/QR and KFDA/SVD are more effective and feasible than Fuzzy Discriminant Analysis (FDA) and Kernel Discriminant Analysis (KDA) in terms of the mean correct recognition rate.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 887-903
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An efficient connected dominating set algorithm in WSNs based on the induced tree of the crossed cube
Autorzy:
Zhang, J.
Xu, L.
Zhou, S. M.
Wu, W.
Ye, X.
Powiązania:
https://bibliotekanauki.pl/articles/330830.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wireless sensor networks
connected dominating set
induced tree
approximation algorithm
crossed cube
bezprzewodowa sieć sensorowa
podgrafy indukowane
algorytm aproksymacyjny
Opis:
The connected dominating set (CDS) has become a well-known approach for constructing a virtual backbone in wireless sensor networks. Then traffic can forwarded by the virtual backbone and other nodes turn off their radios to save energy. Furthermore, a smaller CDS incurs fewer interference problems. However, constructing a minimum CDS is an NP-hard problem, and thus most researchers concentrate on how to derive approximate algorithms. In this paper, a novel algorithm based on the induced tree of the crossed cube (ITCC) is presented. The ITCC is to find a maximal independent set (MIS), which is based on building an induced tree of the crossed cube network, and then to connect the MIS nodes to form a CDS. The priority of an induced tree is determined according to a new parameter, the degree of the node in the square of a graph. This paper presents the proof that the ITCC generates a CDS with a lower approximation ratio. Furthermore, it is proved that the cardinality of the induced trees is a Fibonacci sequence, and an upper bound to the number of the dominating set is established. The simulations show that the algorithm provides the smallest CDS size compared with some other traditional algorithms.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 2; 295-309
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies