- Tytuł:
- Segmentation of the melanoma lesion and its border
- Autorzy:
-
Surówka, Grzegorz
Ogorzałek, Maciej - Powiązania:
- https://bibliotekanauki.pl/articles/2172123.pdf
- Data publikacji:
- 2022
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
computer aided diagnosis
DBSCAN
malignant melanoma
region growing
diagnoza wspomagana komputerowo
czerniak złośliwy
rozrost regionów - Opis:
- Segmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma. In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7 to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B, respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94 and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper preprocessing may be good tools for the computer-aided melanoma diagnosis.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 683--699
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki