Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Siwek, K." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Data mining methods for prediction of air pollution
Autorzy:
Siwek, K.
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/330775.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
computational intelligence
feature selection
neural network
random forest
air pollution forecasting
inteligencja obliczeniowa
selekcja cech
sieć neuronowa
lasy losowe
zanieczyszczenie powietrza
Opis:
The paper discusses methods of data mining for prediction of air pollution. Two tasks in such a problem are important: generation and selection of the prognostic features, and the final prognostic system of the pollution for the next day. An advanced set of features, created on the basis of the atmospheric parameters, is proposed. This set is subject to analysis and selection of the most important features from the prediction point of view. Two methods of feature selection are compared. One applies a genetic algorithm (a global approach), and the other—a linear method of stepwise fit (a locally optimized approach). On the basis of such analysis, two sets of the most predictive features are selected. These sets take part in prediction of the atmospheric pollutants PM10, SO2, NO2 and O3. Two approaches to prediction are compared. In the first one, the features selected are directly applied to the random forest (RF), which forms an ensemble of decision trees. In the second case, intermediate predictors built on the basis of neural networks (the multilayer perceptron, the radial basis function and the support vector machine) are used. They create an ensemble integrated into the final prognosis. The paper shows that preselection of the most important features, cooperating with an ensemble of predictors, allows increasing the forecasting accuracy of atmospheric pollution in a significant way.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 2; 467-478
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble neural network approach for accurate load forecasting in a power system
Autorzy:
Siwek, K.
Osowski, S.
Szupiluk, R.
Powiązania:
https://bibliotekanauki.pl/articles/907659.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
ślepa separacja sygnałów
prognozowanie obciążenia
neural network
blind source separation
ensemble of predictors
load forecasting
Opis:
The paper presents an improved method for 1-24 hours load forecasting in the power system, integrating and combining different neural forecasting results by an ensemble system. We will integrate the results of partial predictions made by three solutions, out of which one relies on a multilayer perceptron and two others on self-organizing networks of the competitive type. As the expert system we will apply different integration methods: simple averaging, SVD based weighted averaging, principal component analysis and blind source separation. The results of numerical experiments, concerning forecasting the hourly load for the next 24 hours of the Polish power system, will be presented and discussed. We will compare the performance of different ensemble methods on the basis of the mean absolute percentage error, mean squared error and maximum percentage error. They show a significant improvement of the proposed ensemble method in comparison to the individual results of prediction. The comparison of our work with the results of other papers for the same data proves the superiority of our approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 2; 303-315
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies