Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Satin, Y." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
On truncations for weakly ergodic inhomogeneous birth and death processes
Autorzy:
Zeifman, A.
Satin, Y.
Korolev, V.
Shorgin, S.
Powiązania:
https://bibliotekanauki.pl/articles/330983.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
birth process
death process
weak ergodicity
truncation
forward Kolmogorov system
nonstationary Markovian queueing model
proces narodzin
proces śmierci
obcinanie
system Kołmogorowa
model Markowa
Opis:
We investigate a class of exponentially weakly ergodic inhomogeneous birth and death processes. We consider special transformations of the reduced intensity matrix of the process and obtain uniform (in time) error bounds of truncations. Our approach also guarantees that we can find limiting characteristics approximately with an arbitrarily fixed error. As an example, we obtain the respective bounds of the truncation error for an Mt/Mt/S queue for any number of servers S. Arbitrary intensity functions instead of periodic ones can be considered in the same manner.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 503-518
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to the origin
Autorzy:
Zeifman, A.
Korotysheva, A.
Satin, Y.
Korolev, V.
Shorgin, S.
Razumchik, R.
Powiązania:
https://bibliotekanauki.pl/articles/331214.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
inhomogeneous birth process
inhomogeneous death process
ergodicity bound
perturbation bound
Opis:
Service life of many real-life systems cannot be considered infinite, and thus the systems will be eventually stopped or will break down. Some of them may be re-launched after possible maintenance under likely new initial conditions. In such systems, which are often modelled by birth and death processes, the assumption of stationarity may be too strong and performance characteristics obtained under this assumption may not make much sense. In such circumstances, time-dependent analysis is more meaningful. In this paper, transient analysis of one class of Markov processes defined on non-negative integers, specifically, inhomogeneous birth and death processes allowing special transitions from and to the origin, is carried out. Whenever the process is at the origin, transition can occur to any state, not necessarily a neighbouring one. Being in any other state, besides ordinary transitions to neighbouring states, a transition to the origin can occur. All possible transition intensities are assumed to be non-random functions of time and may depend (except for transition to the origin) on the process state. To the best of our knowledge, first ergodicity and perturbation bounds for this class of processes are obtained. Extensive numerical results are also provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 4; 787-802
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the rate of convergence for one class of inhomogeneous Markovian queueing models with possible batch arrivals and services
Autorzy:
Zeifman, A.
Razumchik, R.
Satin, Y.
Kiseleva, K.
Korotysheva, A.
Korolev, V.
Powiązania:
https://bibliotekanauki.pl/articles/330534.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
inhomogeneous birth process
inhomogeneous death process
weak ergodicity
rate of convergence
sharp bounds
logarithmic norm
forward Kolmogorov system
proces narodzin
proces śmierci
stopień konwergencji
norma logarytmiczna
system Kołmogorowa
Opis:
In this paper we present a method for the computation of convergence bounds for four classes of multiserver queueing systems, described by inhomogeneous Markov chains. Specifically, we consider an inhomogeneous M/M/S queueing system with possible state-dependent arrival and service intensities, and additionally possible batch arrivals and batch service. A unified approach based on a logarithmic norm of linear operators for obtaining sharp upper and lower bounds on the rate of convergence and corresponding sharp perturbation bounds is described. As a side effect, we show, by virtue of numerical examples, that the approach based on a logarithmic norm can also be used to approximate limiting characteristics (the idle probability and the mean number of customers in the system) of the systems considered with a given approximation error.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 1; 141-154
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies