Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kempa, Wojciech." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Queueing systems with random volume customers and a sectorized unlimited memory buffer
Autorzy:
Tikhonenko, Oleg
Ziółkowski, Marcin
Kempa, Wojciech M.
Powiązania:
https://bibliotekanauki.pl/articles/2055163.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
queueing system
random volume customers
sectorized memory buffer
total volume vector
Laplace transform
Laplace–Stieltjes transform
multivariate L’Hospital rule
system kolejkowania
wektor objętości
transformata Laplace'a
transformata Laplace'a-Stieltjesa
Opis:
In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized by a non-negative random volume vector. The vector’s indications can be understood as the sizes of portions of information of a different type that are located in the sectors of memory space of the system during customers’ sojourn in it. This information does not change while a customer is present in the system. After service termination, information immediately leaves the buffer, releasing its resources. In analyzed models, the service time of a customer is assumed to be dependent on his volume vector characteristics, which has influence on the total volume vector distribution. We investigate three types of such queueing systems: the Erlang queueing system, the single-server queueing system with unlimited queue and the egalitarian processor sharing system. For these models, we obtain a joint distribution function of the total volume vector in terms of Laplace (or Laplace-Stieltjes) transforms and formulae for steady-state initial mixed moments of the analyzed random vector, in the case when the memory buffer is composed of two sectors. We also calculate these characteristics for some practical case in which the service time of a customer is proportional to the customer’s length (understood as the sum of the volume vector’s indications). Moreover, we present some numerical computations illustrating theoretical results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 471--486
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies