- Tytuł:
- Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties
- Autorzy:
-
Peng, Cheng
Zhang, Anguo
Li, Junyu - Powiązania:
- https://bibliotekanauki.pl/articles/2055174.pdf
- Data publikacji:
- 2021
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
multiagent system
radial basis function
RBF neural network
sliding mode control
cooperative control
system wieloagentowy
radialna funkcja bazowa
sieć neuronowa RBF
sterowanie ślizgowe - Opis:
- The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 635--645
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki