Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "network techniques" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Localization in wireless sensor networks: classification and evaluation of techniques
Autorzy:
Niewiadomska-Szynkiewicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/331429.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć sensorowa
sieć bezprzewodowa
sieć ad hoc
system lokalizacji
symulacja sieci
wireless sensor network
ad hoc networks
localization
location systems
network simulation
Opis:
Recent advances in technology have enabled the development of low cost, low power and multi functional wireless sensing devices. These devices are networked through setting up a Wireless Sensor Network (WSN). Sensors that form a WSN are expected to be remotely deployed in large numbers and to self-organize to perform distributed sensing and acting tasks. WSNs are growing rapidly in both size and complexity, and it is becoming increasingly difficult to develop and investigate such large and complex systems. In this paper we provide a brief introduction to WSN applications, i.e., properties, limitations and basic issues related to WSN design and development. We focus on an important aspect of the design: accurate localization of devices that form the network. The paper presents an overview of localization strategies and attempts to classify different techniques. A set of properties by which localization systems are evaluated are examined. We then describe a number of existing localization systems, and discuss the results of performance evaluation of some of them through simulation and experiments using a testbed implementation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 2; 281-297
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble learning techniques for transmission quality classification in a Pay&Require multi-layer network
Autorzy:
Żelasko, Dariusz
Pławiak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1838182.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Pay&Require
ensemble learning
machine learning
resource allocation
QoS
uczenie zespołowe
uczenie maszynowe
alokacja zasobu
Opis:
Due to a continuous increase in the use of computer networks, it has become important to ensure the quality of data transmission over the network. The key issue in the quality assurance is the translation of parameters describing transmission quality to a certain rating scale. This article presents a technique that allows assessing transmission quality parameters. Thanks to the application of machine learning, it is easy to translate transmission quality parameters, i.e., delay, bandwidth, packet loss ratio and jitter, into a scale understandable by the end user. In this paper we propose six new ensembles of classifiers. Each classification algorithm is combined with preprocessing, cross-validation and genetic optimization. Most ensembles utilize several classification layers in which popular classifiers are used. For the purpose of the machine learning process, we have created a data set consisting of 100 samples described by four features, and the label which describes quality. Our previous research was conducted with respect to single classifiers. The results obtained now, in comparison with the previous ones, are satisfactory—high classification accuracy is reached, along with 94% sensitivity (overall accuracy) with 6/100 incorrect classifications. The suggested solution appears to be reliable and can be successfully applied in practice.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 1; 135-153
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data-driven techniques for the fault diagnosis of a wind turbine benchmark
Autorzy:
Simani, S.
Farsoni, S.
Castaldi, P.
Powiązania:
https://bibliotekanauki.pl/articles/330715.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault diagnosis
analytical redundancy
fuzzy system
neural network
residual generator
fault estimation
wind turbine benchmark
diagnostyka uszkodzeń
redundancja analityczna
system rozmyty
sieć neuronowa
estymacja błędu
turbina wiatrowa
Opis:
This paper deals with the fault diagnosis of wind turbines and investigates viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator, i.e., the fault estimate, involves data-driven approaches, as they can represent effective tools for coping with poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the proposed data-driven solutions rely on fuzzy systems and neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear autoregressive models with exogenous input, as they can represent the dynamic evolution of the system along time. The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are also compared with those of other model-based strategies from the related literature. Finally, a Monte-Carlo analysis validates the robustness and the reliability of the proposed solutions against typical parameter uncertainties and disturbances.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 2; 247-268
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies