Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "interpretation of data" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Interpretacja statystyk w ar tykułach naukowych – wskazówki dla praktyków
the interpretation of the statistical data in scientific papers – advices for practitioners
Autorzy:
Budzicz, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/514261.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wielkość efektu
istotność statystyczna
przedziały ufności
interpretowanie danych statystycznych.
effect size
statistical significance
confidence interval
interpretation of statistical data.
Opis:
Artykuł zawiera informacje o tym, jak interpretować podstawowe dane statystyczne: wskaźniki istotności statystycznej, wielkości efektu i przedziały ufności. Pokazano kilka heurystyk użytecznych przy interpretacji wielkości efektów korelacji r Pearsona, statystyki d Cohena oraz relatywnego ryzyka. Olbrzymia większość pozostałych efektów jest pochodną wyżej wymienionych. Dodatkowo wskazano również, jakie są ograniczenia wybranych wskaźników, szczególnie istotności statystycznej. Artykuł jest pomyślany jako pomoc szczególnie dla psychologów praktyków.
The article contains information how to interpret statistical data: statistical significance, effect size and confidence intervals. Several heuristics are given how to usefully interpret the magnitude of the correlation Pearson’s r, Cohen’s d and relative risk. The vast majority of other effects is a derivative of the aforementioned. In addition, I also show the limitations of selected indicators, especially statistical significance. This article is intended as an aid especially for psychologists practitioners.
Źródło:
Psychologiczne Zeszyty Naukowe; 2017, 1; 143-158
2451-1420
Pojawia się w:
Psychologiczne Zeszyty Naukowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fusion of clinical data: A case study to predict the type of treatment of bone fractures
Autorzy:
Haq, Anam
Wilk, Szymon
Abelló, Alberto
Powiązania:
https://bibliotekanauki.pl/articles/330674.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
clinical data
data fusion
combination of data
combination of interpretation
prediction model
decision support
dane kliniczne
fuzja danych
łączenie danych
model predykcyjny
wspomaganie decyzji
Opis:
A prominent characteristic of clinical data is their heterogeneity—such data include structured examination records and laboratory results, unstructured clinical notes, raw and tagged images, and genomic data. This heterogeneity poses a formidable challenge while constructing diagnostic and therapeutic decision models that are currently based on single modalities and are not able to use data in different formats and structures. This limitation may be addressed using data fusion methods. In this paper, we describe a case study where we aimed at developing data fusion models that resulted in various therapeutic decision models for predicting the type of treatment (surgical vs. non-surgical) for patients with bone fractures. We considered six different approaches to integrate clinical data: one fusion model based on combination of data (COD) and five models based on combination of interpretation (COI). Experimental results showed that the decision model constructed following COI fusion models is more accurate than decision models employing COD. Moreover, statistical analysis using the one-way ANOVA test revealed that there were two groups of constructed decision models, each containing the set of three different models. The results highlighted that the behavior of models within a group can be similar, although it may vary between different groups.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 1; 51-67
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal estimator of hypothesis probability for data mining problems with small samples
Autorzy:
Piegat, A
Landowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/330967.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
estymacja prawdopodobieństwa
interpretacja częstotliwości prawdopodobieństwa
interpretacja kompletności prawdopodobieństwa
teoria niepewności
single case problem
probability estimation
frequency interpretation of probability
completeness interpretation of probability
uncertainty theory
Opis:
The paper presents a new (to the best of the authors' knowledge) estimator of probability called the "[...] completeness estimator" along with a theoretical derivation of its optimality. The estimator is especially suitable for a small number of sample items, which is the feature of many real problems characterized by data insufficiency. The control parameter of the estimator is not assumed in an a priori, subjective way, but was determined on the basis of an optimization criterion (the least absolute errors).The estimator was compared with the universally used frequency estimator of probability and with Cestnik's m-estimator with respect to accuracy. The comparison was realized both theoretically and experimentally. The results show the superiority of the [...] completeness estimator over the frequency estimator for the probability interval ph (0.1, 0.9). The frequency estimator is better for ph [0, 0.1] and ph [0.9, 1].
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 629-645
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies