Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial neural network (ANN)" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Gap Filling of Daily Sea Levels by Artificial Neural Networks
Autorzy:
Pashova, L.
Koprinkova-Hristova, P. D.
Popova, S.
Powiązania:
https://bibliotekanauki.pl/articles/116147.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
artificial neural network (ANN)
hydrography
Black Sea
Opis:
In the recent years, intelligent methods as artificial neural networks are successfully applied for data analysis from different fields of the geosciences. One of the encountered practical problems is the availability of gaps in the time series that prevent their comprehensive usage for the scientific and practical purposes. The article briefly describes two types of the artificial neural network (ANN) architectures ‐ Feed‐ Forward Backpropagation (FFBP) and recurrent Echo state network (ESN). In some cases, the ANN can be used as an alternative on the traditional methods, to fill in missing values in the time series. We have been conducted several experiments to fill the missing values of daily sea levels spanning a 5‐years period using both ANN architectures. A multiple linear regression for the same purpose has been also applied. The sea level data are derived from the records of the tide gauge Burgas, which is located on the western Black Sea coast. The achieved results have shown that the performance of ANN models is better than that of the classical one and they are very promising for the real‐time interpolation of missing data in the time series.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2013, 7, 2; 225-232
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Artificial Neural Network into the Water Level Modeling and Forecast
Autorzy:
Sztobryn, M.
Powiązania:
https://bibliotekanauki.pl/articles/116204.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
artificial neural network (ANN)
hydrography
coastal area
Opis:
The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN) methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk ‐ Baltic Sea).
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2013, 7, 2; 219-223
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuroevolutionary approach to COLREGs ship maneuvers
Autorzy:
Łącki, M.
Powiązania:
https://bibliotekanauki.pl/articles/116206.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
collision avoidance
colregs
neuroevolutionary approach to colregs
ship handling system
artificial helmsman
Artificial Neural Network (ANN)
evolutionary algorithms
ship manoeuvering
Opis:
The paper describes the usage of neuroevolutionary method in collision avoidance of two power-driven vessels approaching each other regarding COLREGs rules. This may be also be seen as the ship handling system that simulates a learning process of a group of artificial helmsmen - autonomous control units, created with artificial neural networks. The helmsman observes an environment by its input signals and according to assigned CORLEGs rule, he calculates the values of required parameters of maneuvers (propellers rpm and rudder deflection) in a collision avoidance situation. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task safely and efficiently. The main task of this project is to evolve a population of helmsmen which is able to effectively implement chosen rule: crossing or overtaking.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 745-750
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reinforcement Learning in Ship Handling
Autorzy:
Łącki, M.
Powiązania:
https://bibliotekanauki.pl/articles/117361.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Ship Handling
Reinforcement Learning
Machine Learning Techniques
Manoeuvring
Restricted Waters
Markov Decision Process (MDP)
Artificial Neural Network (ANN)
multi-agent environment
Opis:
This paper presents the idea of using machine learning techniques to simulate and demonstrate learning behaviour in ship manoeuvring. Simulated model of ship is treated as an agent, which through environmental sensing learns itself to navigate through restricted waters selecting an optimum trajectory. Learning phase of the task is to observe current state and choose one of the available actions. The agent gets positive reward for reaching destination and negative reward for hitting an obstacle. Few reinforcement learning algorithms are considered. Experimental results based on simulation program are presented for different layouts of possible routes within restricted area.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2008, 2, 2; 157-160
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Methods of Determining the Safe Ship Trajectory
Autorzy:
Lisowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/116647.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
ship route
Safe Ship Trajectory
route planning
Determining the Safe Ship Trajectory
ship trajectory
Artificial Neural Network (ANN)
game theory
computer simulation
Opis:
The paper describes six methods of optimal and game theory and artificial neural network for synthesis of safe control in collision situations at sea. The application of optimal and game control algorithms to determine the own ship safe trajectory during the passing of other encountered ships in good and restricted visibility at sea is presented. The comparison of the safe ship control in collision situation: multi-step matrix non-cooperative and cooperative games, multi-stage positional non-cooperative and cooperative games have been introduced. The considerations have been illustrated with examples of computer simulation of the algorithms to determine safe of own ship trajectories in a navigational situation during passing of eight met ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2016, 10, 2; 223-228
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Consistently Trained Artificial Neural Network for Automatic Ship Berthing Control
Autorzy:
Ahmed, Y.
Hasegawa, K.
Powiązania:
https://bibliotekanauki.pl/articles/116809.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Port Maneuvres
Artificial Neural Network (ANN)
Automatic Ship Berthing Control
Ship Berthing
Automatic Ship Berthing
Monte Carlo simulation
Autonomous Underwater Vehicle (AUV)
Teaching Data Creation
Opis:
In this paper, consistently trained Artificial Neural Network controller for automatic ship berthing is discussed. Minimum time course changing manoeuvre is utilised to ensure such consistency and a new concept named ‘virtual window’ is introduced. Such consistent teaching data are then used to train two separate multi-layered feed forward neural networks for command rudder and propeller revolution output. After proper training, several known and unknown conditions are tested to judge the effectiveness of the proposed controller using Monte Carlo simulations. After getting acceptable percentages of success, the trained networks are implemented for the free running experiment system to judge the network’s real time response for Esso Osaka 3-m model ship. The network’s behaviour during such experiments is also investigated for possible effect of initial conditions as well as wind disturbances. Moreover, since the final goal point of the proposed controller is set at some distance from the actual pier to ensure safety, therefore a study on automatic tug assistance is also discussed for the final alignment of the ship with actual pier.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2015, 9, 3; 417-426
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies