Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kalman" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Identification of Ship Maneuvering Model Using Extended Kalman Filters
Autorzy:
Shi, C.
Zhao, D.
Peng, J.
Shen, C.
Powiązania:
https://bibliotekanauki.pl/articles/116777.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Manoeuvring
Ship Manoeuvering Model
Kalman filter
extended Kalman filter (EKF)
Ship Manoeuvrability
ship handling simulator
Turning Circle Test
Zig-Zag Test
Opis:
Ship maneuvering models are the keys to the research of ship maneuverability, design of ship motion control system and development of ship handling simulators. For various frames of ship maneuvering models, determining the parameters of the models is always a tedious task. System identification theory can be used to establish system mathematical models by the system’s input data and output data. In this paper, based on the analysis of ship hydrodynamics, a nonlinear model frame of ship maneuvering is established. System identification theory is employed to estimate the parameters of the model. An algorithm based on the extended Kalman filter theory is proposed to calculate the parameters. In order to gain the system’s input and output data, which is necessary for the parameters identification experiment, turning circle tests and Zig-zag tests are performed on shiphandling simulator and the initial data is collected. Based on the Fixed Interval Kalman Smoothing algorithm, a pre-processing algorithm is proposed to process the raw data of the tests. With this algorithm, the errors introduced during the measurement process are eliminated. Parameters identification experiments are designed to estimate the model parameters, and the ship maneuvering model parameters estimation algorithm is extended to modify the parameters being estimated. Then the model parameters and the ship maneuvering model are determined. Simulation validation was carried out to simulate the ship maneuverability. Comparisons have been made to the simulated data and measured data. The results show that the ship maneuvering model determined by our approach can seasonably reflect the actual motion of ship, and the parameter estimation procedure and algorithms are effective.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2009, 3, 1; 105-110
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study of optimization of Alpha-Beta-Gamma-Eta filter for tracking a high dynamic target
Autorzy:
Jeong, T.
Pan, B.F.
Njonjo, A.W.
Powiązania:
https://bibliotekanauki.pl/articles/116199.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
integrated navigation
Alpha-Beta-Gamma filter
Kalman filter
high dynamic target
ships tracking
target dynamics
Jerky Model
ARPA
Opis:
The tracking filter plays a key role in accurate estimation and prediction of maneuvering vessel’s position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The Alpha-Beta-Gamma filter is one of the special cases of the general solution pro-vided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity and acceleration for the nth observation, and also predicts the next position and velocity. Although found to track a maneuvering target with a good accuracy than the constant velocity, Alpha-Beta filter, the Alpha-Beta-Gamma filter does not perform impressively under high maneuvers such as when the target is undergoing changing accelerations. This study, therefore, aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The Alpha-Beta-Gamma filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration in order to improve the filter’s performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, Alpha-Beta-Gamma-Eta, algorithm as compared to the constant acceleration model, Alpha-Beta-Gamma in terms of error reduction and stability of the filter during target maneuver.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2017, 11, 1; 49-53
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study on the performance comparison of three optimal Alpha-Beta-Gamma filters and Alpha-Beta-Gamma-Eta filter for a high dynamic target
Autorzy:
Jeong, T.
Njonjo, A.W.
Pan, B.F.
Powiązania:
https://bibliotekanauki.pl/articles/116598.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
integrated navigation
Alpha-Beta-Gamma filter
Benedict-Bordner filter
Simpson filter
Gray-Murray filter
target dynamics
Alpha-Beta-Gamma-Eta filter
Kalman filter
Opis:
The Alpha-Beta-Gamma tracking filter is useful for tracking a constant acceleration target with zero lag error in the steady state. It, however, depicts a constant lag error for a maneuvering target. Various algorithms of the Alpha-Beta-Gamma tracking filter exist in literature and each one of them presents its own unique challenges and advantages depending on the design requirement. This study investigates the operation of three Alpha-Beta-Gamma tracking filter design methods which include Benedict-Bordner also known as the Simpson filter, Gray-Murray filter and the fading memory constant acceleration filter. These filters are then compared based on the ability to reduce noise and follow a maneuvering target with minimum lag error, against the jerky model Alpha-Beta-Gamma-Eta. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model in comparison with the constant acceleration models.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2017, 11, 1; 55-61
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area
Autorzy:
Bikonis, K.
Demkowicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/115987.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Inertial Measurement Unit (IMU)
Urban Area
inertial navigation system (INS)
Global Positioning System GPS
extended Kalman filter (EKF)
pedestrian trajectory
Micro Electro Mechanical Systems (MEMS)
Integration of Navigation
Opis:
The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF) algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2013, 7, 3; 401-406
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parameter identification of ship maneuvering models using recursive least square method based on support vector machines
Autorzy:
Zhu, M.
Hahn, A.
Wen, Y.
Bolles, A.
Powiązania:
https://bibliotekanauki.pl/articles/116455.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
ship manoeuvering
recursive least square method
ship manoeuvering model
ship maneuverability prediction
Support Vector Machines (SVM)
empirical mode decomposition (EMD)
Computational Fluid Dynamics (CFD)
Extended Kalman Filter (EKF)
Opis:
Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS), are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM), is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD) are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2017, 11, 1; 23-29
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies