Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lipschitz" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Generalized trend constants of Lipschitz mappings
Autorzy:
Szczepanik, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/747268.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Banach space
Lipschitz mapping
fixed point
Opis:
In 2015, Goebel and Bolibok defined the initial trend coefficient of a mapping and the class of initially nonexpansive mappings. They proved that the fixed point property for nonexpansive mappings implies the fixed point property for initially nonexpansive mappings. We generalize the above concepts and prove an analogous fixed point theorem. We also study the initial trend coefficient more deeply.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2018, 72, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces
Autorzy:
Goebel, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/2078971.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Retraction
Lipschitz constant
radial projection
truncation
spherical cap
Opis:
For any infinite dimensional Banach space there exists a lipschitzian retraction of the closed unit ball B onto the unit sphere S. Lipschitz constants for such retractions are, in general, only roughly estimated. The paper is illustrative. It contains remarks, illustrations and estimates concerning optimal retractions onto spherical caps for sequence spaces with the uniform norm.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2020, 74, 1; 45-55
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a result by Clunie and Sheil-Small
Autorzy:
Partyka, Dariusz
Sakan, Ken-ichi
Powiązania:
https://bibliotekanauki.pl/articles/747161.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Harmonic mappings
Lipschitz condition
bi-Lipchitz condition
co-Lipchitz condition
quasiconformal mappings
Opis:
In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping \(F\) in the unit disk \(\mathbb{D}\), if \(F(\mathbb{D})\) is a convex domain, then the inequality \(|G(z_2)-G(z_1)| < |H(z_2)- H(z_1)|\) holds for all distinct points \(z_1, z_2 \in \mathbb{D}\). Here \(H\) and \(G\) are holomorphic mappings in \(\mathbb{D}\) determined by \(F = H + \overline{G}\), up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain \(\Omega\) in \(\mathbb{C}\) and improve it provided \(F\) is additionally a quasiconformal mapping in \(\Omega\).
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2012, 66, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies