Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Entire functions" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
On the convergence of certain integrals
Autorzy:
Hachani, Mohamed Amine
Powiązania:
https://bibliotekanauki.pl/articles/1395940.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Entire functions
Hadamard’s three-circles theorem
infinite integrals
Opis:
Let \(M(r) := \max_{|z|=r} |f(z)|\), where \(f(z)\) is an entire function. Also let \(\alpha> 0\) and \(\beta>1\). We discuss the behavior of the integrand \(M(r)e^{-\alpha(log r)^\beta}\) as \(r \to \infty\) if \(\int_1^\infty M(r)e^{-\alpha(log r)^\beta}dr\) is convergent.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2019, 73, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the Euler's gamma function to a problem related to F. Carlson's uniqueness theorem
Autorzy:
Qazi, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/747112.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Entire functions
Hadamard's three circles theorem
Euler's Gamma function
Opis:
In his work on F. Carlson's uniqueness theorem for entire functions of exponential type, Q. I. Rahman [5] was led to consider an infinite integral and needed to determine the rate at which the integrand had to go to zero for the integral to converge. He had an estimate for it which he was content with, although it was not the best that could be done. In the present paper we find a result about the behaviour of the integrand at infinity, which is essentially best possible. Stirling's formula for the Euler's Gamma function plays an important role in its proof.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2016, 70, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\)
Autorzy:
Hachani, Mohamed Amine
Powiązania:
https://bibliotekanauki.pl/articles/747061.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Inequalities
entire functions of exponential type
polynomial
trigonometric polynomial
Opis:
Let \(P (z)\) be a polynomial of degree \(n\) having no zeros in \(|z| < k\), \(k \leq 1\), and let \(Q (z) := z^n \overline{P (1/{\overline {z}})}\). It was shown by Govil that if \(\max_{|z| = 1} |P^\prime (z)|\) and \(\max_{|z| = 1} |Q^\prime (z)|\) are attained at the same point of the unit circle \(|z| = 1\), then \[\max_{|z| = 1} |P'(z)| \leq \frac{n}{1 + k^n} \max_{|z| = 1} |P(z)|.\]The main result of the present article is a generalization of Govil's polynomial inequality to a class of entire functions of exponential type.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2017, 71, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies