- Tytuł:
- Endomorphism monoid of diamond product of two common complete bipartite graphs
- Autorzy:
-
Jiarasuksakun, T.
Rutjanisarakul, T.
Thongjua, W. - Powiązania:
- https://bibliotekanauki.pl/articles/121678.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
- Tematy:
-
graph theory
bipartite graph
teoria grafów
graf dwudzielny - Opis:
- An endomorphism of a graph G = (V, E) is a mapping f : V → V such that for all x, y ∈ V if {x, y} ∈ E, then {f (x),f (y)}∈ E. Let End(G) be the class of all endomorphisms of graph G. The diamond product of graph G = (V, E) (denoted by G ◊ G) is a graph defined by the vertex set V (G ◊ G) = End(G) and the edge set E (G ◊ G) ={{f, g} ⊂ End(G)|{f(x), g(x)} ∈ E for all x ∈ V}. Let Km,n be a complete bipartite graph on m + n vertices. This research aims to study the algebraic property of V (Km,n ◊ Km,n) = End(Km,n) after we have found that Km,n ◊ Km,n is also a complete bipartite graph on mmnn + nmmn vertices. The result shows that all of its vertices (endomorphisms) form a noncommutative monoid.
- Źródło:
-
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics; 2010, 15; 59-66
2450-9302 - Pojawia się w:
- Scientific Issues of Jan Długosz University in Częstochowa. Mathematics
- Dostawca treści:
- Biblioteka Nauki