Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Algorytm EM" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Estimation of regression parameters of two dimensional probability distribution mixtures
Estymacja parametrów regresji mieszanki dwuwymiarowych rozkładów prawdopodobieństwa
Autorzy:
Sitek, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/592694.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
EM algorithm
Least squares method for an implicite interdependence
Mixture regression model
Algorytm EM
Metoda najmniejszych kwadratów dla zależności niejawnych
Mieszanki regresji
Opis:
We use two methods of estimation parameters in a mixture regression: maximum likelihood (MLE) and the least squares method for an implicit interdependence. The most popular method for maximum likelihood esti-mation of the parameter vector is the EM algorithm. The least squares method for an implicit interdependence is based solving systems of nonlinear equations. Most frequently used method in the estimation of parameters mixtures regression is the method of maximum likelihood. The article presents the possibility of using a different the least squares method for an implicit interdependence and compare it with the maximum likelihood method. We compare accuracy of two methods of estimation by simulation using bias: root mean square error and bootstrapping standard errors of estimation.
Do estymacji parametrów mieszanek regresji stosujemy dwie metody: metodę największej wiarygodności oraz metodę najmniejszych kwadratów dla zależności niejawnych. Najbardziej popularną metodą polegającą na maksymalizacji funkcji wiarygodności jest algorytm EM. Metoda najmniejszych kwadratów dla zależności niejawnych polega na rozwiązaniu układu równań nieliniowych. Najczęściej stosowaną metodą estymacji parametrów mieszanek regresji jest metoda największej wiarygodności. W artykule pokazano możliwość zastosowania innej metody najmniejszych kwadratów dla zależności niejawnych. Obie metody porównujemy symulacyjnie, używając obciążenia estymatora, pierwiastka błędu średniokwadratowego estymatora oraz bootstrapowe błędy standardowe.
Źródło:
Studia Ekonomiczne; 2016, 304; 30-46
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sekwencyjna metoda Monte Carlo i jej zastosowanie do modelowania zmienności inflacji w Polsce
Sequential Monte Carlo method and its application for modelling inflation volatility in Poland
Autorzy:
Brzozowska-Rup, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2041251.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
algorytm EM
Inflacja
metoda SMC
model CIR
Modele zmienności stochastycznej
CIR model
Expectation-Maximization (EM) algorithm
Inflation
Sequential Monte Carlo method
Stochastic volatility models
Opis:
The aim of the article is to present a selected model of stochastic volatility to describe inflation volatility in Poland, with particular emphasis on the possibility of using the estimation technique based on the Sequential Monte Carlo method. A model of stochastic volatility is presented, in which conditional variance is treated as an unobserved variable described by the one-factor Cox, Ingersoll and Ross model (CIR, 1985). The advantages and effectiveness of the proposed method are presented on the basis of monthly inflation rates in Poland from 2004 to 2017.
Celem artykułu jest zaprezentowanie wybranego modelu stochastycznej zmienności do opisu zmienności inflacji w Polsce, ze szczególnym uwzględnieniem możliwości zastosowania techniki estymacji wykorzystującej sekwencyjną metodę Monte Carlo (ang. Sequential Monte Carlo method, SMC). Przedstawiono model zmienności stochastycznej, w którym wariancja warunkowa jest traktowana jako zmienna nieobserwowana opisywana za pomocą jednoczynnikowego modelu Coxa, Ingersola i Rossa (CIR) [Cox, Ingersoll, Ross, 1985]. Zalety oraz efektywność proponowanej metody zaprezento-wano na podstawie miesięcznych danych historycznych poziomu inflacji w Polsce w latach 2004-2017.
Źródło:
Studia Ekonomiczne; 2020, 395; 21-36
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies