- Tytuł:
- Improving the quality of the fetal state assessment with epsilon-insensitive learning methods
- Autorzy:
-
Czabański, R.
Wróbel, J.
Jeżewski, J.
Łęski, J. - Powiązania:
- https://bibliotekanauki.pl/articles/333468.pdf
- Data publikacji:
- 2014
- Wydawca:
- Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
- Tematy:
-
fetal monitoring
fuzzy implication
epsilon-insensitive learning
monitorowanie płodu
implikacja rozmyta - Opis:
- Recording and analysis of fetal heart rate (FHR) signal is nowadays the primary method for the biophysical assessment of the fetal state. Since the correct interpretation of crucial FHR characteristics is difficult, methods of automated quantitative signal evaluation are still the subject of the research studies. In the following paper we investigated the possibility of improvement of the fetal state evaluation on the basis of the epsilon-insensitive learning (eIL). We examined two eIL procedures integrated with fuzzy clustering algorithms as well as different methods of logical interpretation of the fuzzy conditional statements. The quality of the FHR signal classification was evaluated using the data collected with the computerized fetal surveillance system. The learning performance was measured with the number of correct classification (CC) and overall quality index (QI) defined as a geometric mean of sensitivity and specificity. The obtained results (CC = 88 % and QI = 87 %) show a high efficiency of the fetal state assessment using the epsilon-insensitive learning based methods.
- Źródło:
-
Journal of Medical Informatics & Technologies; 2014, 23; 19-26
1642-6037 - Pojawia się w:
- Journal of Medical Informatics & Technologies
- Dostawca treści:
- Biblioteka Nauki