Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ischemic stroke" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
The method of neuron weight vector initial values selection in Kohonen network
Autorzy:
Chandzlik, S.
Powiązania:
https://bibliotekanauki.pl/articles/333164.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
neural networks
Kohonen network
neurological diseases diagnosis
Parkinson disease
hemiparesis after ischemic stroke
Opis:
Diagnosing of morbid conditions by means of automatic tools supported by computers is a significant and often used element in modern medicine. Some examples of these tools are automatic conclusion-making units of Parotec System for Windows (PSW). In the initial period of PSW system implementation, the units were used for recognition of orthopaedic diseases on the basis of the patient's walk and posture [15,17]. Subsequently, many additional options have been implemented, which have been used for purposes of diagnosing neurological diseases [1,2,3,9,12]. During automatic classification of diseases the additional units use elements of neural networks. The vectors based on normalised diagnostic measures [3] are inputs of the units. The measurements describe a patient's posture condition, his walk and overloads occurring on his feet. The Counter-Propagation (CP), two-layer network has been used in one of the automatic conclusion-making units. During CP network activity, we can see not only supervised but unsupervised learning processes as well. This is a characteristic feature of the CP network. The initial steps of the CP network learning process are very important, because the success of the network training process depends on them to a great extent. Therefore, a new method of weight vector initial values selection was proposed. The efficiency of the method was compared with classical methods. The results were very satisfactory. Owing to the proposed method, the time of the network training process as well as the mean-square error and the classification error was reduced. The research has been carried out using clinical cases of some neurological diseases: Parkinson's Disease, left-lateral hemiparesis and right-lateral hemiparesis after ischemic stroke. The measurements, which were made on a control group of patients without any neurological diseases, were the reference for these diagnostic classes.
Źródło:
Journal of Medical Informatics & Technologies; 2006, 10; 189-197
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conceptual improvements in computer-aided diagnosis of acute stroke
Autorzy:
Jóźwiak, R.
Przelaskowski, A.
Ostrek, G.
Powiązania:
https://bibliotekanauki.pl/articles/333402.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
udar niedokrwienny mózgu
wielozakresowe przetwarzanie
diagnozy wspomagane komputerowo
ischemic stroke
multiscale processing
computer-aided diagnosis
Opis:
This work presents some conceptual improvements in assistance of acute stroke diagnosis with Stroke Monitor - computer-aided diagnosis tool developed and elaborated by Telemedicine Group from Institute of Radioelectronics, Warsaw University of Technology. Based on statistical analysis of common error sources we proposed some ideas of improvement capabilities for false positive errors reduction. Simulation and experimental verification confirmed validity of further development directions.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 191-199
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The diseases classification method on gait abnormalities characteristic contributions
Autorzy:
Chandzlik, S.
Piecha, J.
Powiązania:
https://bibliotekanauki.pl/articles/333759.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
klasyfikacja chorób neurologicznych
choroba Parkinsona
niedowład
udar niedokrwienny mózgu
automatyczne zakończenie
sieci nuronowe
neurological disease classification
Parkinson disease
hemiparesis
ischemic stroke
automatic conclusion
neural networks
Opis:
Present medicine uses computers in various applications, especially in a field of a diseases level classification and diagnosis. In many cases an automatic conclusion making units are the main goal of the computer systems usage. The software units are developed for the diseases classification or for monitoring of the disease medical treatment. An example application was described in this paper. It concerns a gait abnormalities level analysis that is described by a data records gathered by insoles of Parotec System for Windows (PSW) [17,18]. The PSW software package is used for visualisation of the gait characteristic static and dynamic characteristic features. In the authors' works many additional data components were distinguished. The field of the applications is located within the neurological gait characteristics also the source applications concern orthopaedics [16,18]. Careful analysis of the data provided the developers with new areas the PSW applications [4,11,13]. For conclusion making units the artificial networks theory was implemented [2,4,11,13]. For more effective training of the neural networks specific characteristic measures were introduced [4,5]. They allow controlling the training process more precisely, avoiding mistakes in current records classification.
Źródło:
Journal of Medical Informatics & Technologies; 2005, 9; 187-194
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies