Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "model Faya-Herriota" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
O predykcji wartości globalnej w domenie z wykorzystaniem informacji o zmiennych dodatkowych przy założeniu modelu Faya-Herriota
On Some Problem of Prediction of Domain Total under Fay-Herriot Model
Autorzy:
Żądło, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/906765.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
BLUP
EBLUP
model Faya-Herriota
estymatory MSE
Opis:
In the paper BLUPs and EBLUPs, their MSEs and estimators of MSEs under Fay-Herrior model (Fay, Herrior (1979)) are presented. This model belongs to the class of general linear mixed model type A, what means that is assumed for direct estimates of domain characteristics. What is more, it is assumed that variances of direct estimates are known. In the paper the influence of replacing the variances by their unbiased estimates and by genereal variance function’s estimates on biases of predictors, MSEs and biases of estimators of MSEs is studied in the simulation based on the real data. The problem of nonormality of area specific random components is also included
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2012, 271
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Simulation Study of Jackknife and Bootstrap MSE Estimators of a Domain Mean Predictor for Fay‑Herriot Model
O badaniu symulacyjnym własności estymatorów MSE predyktora wartości średniej dla modelu Faya-Herriota bazujących na metodzie jackknife oraz bootstrap
Autorzy:
Krzciuk, Małgorzata Karolina
Powiązania:
https://bibliotekanauki.pl/articles/657111.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
estymatory MSE
metoda jackknife
parametryczna metoda bootstrap
empiryczny najlepszy liniowy nieobciążony predyktor
model Faya-Herriota
badanie symaluacyjne
estimators of MSE
jackknife
parametric bootstrap
Empirical Best Linear Unbiased Predictor
Fay‑Herriot model
simulation
Opis:
W artykule rozważany jest problem estymacji błędu średniokwadratowego (MSE) w przypadku predykcji wartości średniej w domenie, w oparciu o model Faya-Herriota. W badaniu symulacyjnym analizowane są własności ośmiu estymatorów MSE, w tym bazujących na metodzie jackknife (Jiang, Lahiri, Wan (2002), Chen, Lahiri (2002, 2003)) oraz parametrycznej metodzie bootstrap (Gonzalez-Manteiga et al. (2008), Buthar, Lahiri (2003)). W modelu Faya-Herriota zakładana jest niezależność składników losowych, a obciążenia estymatorów MSE są małe dla dużej liczby domen. Celem artykułu jest porównanie własności estymatorów MSE przy różnej liczbie domen i błędnej specyfikacji modelu wynikającej z występowania korelacji efektów losowych w badaniu symulacyjnym.
  We consider the problem of the estimation of the mean squared error (MSE) of some domain mean predictor for Fay‑Herriot model. In the simulation study we analyze properties of eight MSE estimators including estimators based on the jackknife method (Jiang, Lahiri, Wan, 2002; Chen, Lahiri, 2002; 2003) and parametric bootstrap (Gonzalez‑Manteiga et al., 2008; Buthar, Lahiri, 2003). In the standard Fay‑Herriot model the independence of random effects is assumed, and the biases of the MSE estimators are small for large number of domains. The aim of the paper is the comparison of the properties of MSE estimators for different number of domains and the misspecification of the model due to the correlation of random effects in the simulation study.  
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2017, 5, 331; 169-183
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies