- Tytuł:
-
Application of Discriminant Analysis and Neural Networks to Forecasting the Financial Standing of Farms
Wykorzystanie analizy dyskryminacyjnej oraz sieci neuronowych do prognozowania sytuacji finansowej gospodarstw rolniczych z uwzględnieniem czasu - Autorzy:
- Kisielińska, Joanna
- Powiązania:
- https://bibliotekanauki.pl/articles/905048.pdf
- Data publikacji:
- 2009
- Wydawca:
- Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
- Tematy:
-
linear discriminant function
neural networks - Opis:
-
The aim of the research was to determinate a linear discriminant function and neural network that could be applied for financial situation forecasting in polish farms sector. The construction of discriminant models was based on set of financial indicators and the classification criterion was based on the private farm's income. The investigated population was divided into two equal groups with respect to the median value of income. The data was gathered in the period of several years that allowed examine the influence of the time on the quality of discriminant models. Also the set of indicators with large forecasting ability was determined. The data used for the discriminant models was sourced from private farms keeping farm accountancy under auspices the Institute of Agricultural and Food Economics in the years 1992-2002. The calculations was made with help of STATISTICA and data analysis with Excel using VISUAL BASIC FOR APPLICATION.
Celem prezentowanych badań było wyznaczenie liniowej funkcji dyskryminacyjnej oraz sieci neuronowej do tworzenia prognoz sytuacji finansowej gospodarstw rolniczych. Podstawę, konstrukcji modeli dyskryminacyjnych stanowił zestaw wskaźników finansowych, natomiast kryterium klasyfikacji oparte zostało na dochodzie rolniczym. Badaną zbiorowość podzielono na dwie równoliczne klasy. Gospodarstwa osiągające dochód rolniczy mniejszy od mediany (gospodarstwa słabe) zaliczano do klasy I, natomiast o dochodzie od niej większym (gospodarstw dobre) do II. Taki dobór kryterium klasyfikacji wynika z tego, że w przypadku gospodarstw rolniczych problem bankructwa praktycznie nie występuje, wobec czego nie można dla nuli budować typowych modeli ostrzegawczych. Analizy przeprowadzono na podstawie danych pochodzących z kilku lat, co pozwoliło im zbadanie wpływu czasu na jakość uzyskanych modeli dyskryminacyjnych. Chodziło o sprawdzenie, czy model zbudowany dla jednego roku można będzie wykorzystać w lalach kolejnych. Cel dodatkowy polegał na określeniu wskaźników finansowych o największych zdolnościach prognostycznych, czyli takich, których wpływ na wartość funkcji dyskryminacyjnej jest najistotniejszy. Modele dyskryminacyjne utworzono w oparciu o wyniki finansowe gospodarstw rolniczych prowadzących rachunkowość rolną pod kierunkiem Instytutu Ekonomiki Rolnictwa i Gospodarki Żywnościowej w latach 1992-2001. Do obliczeń wykorzystany został pakiet STATISTICA, natomiast obróbkę danych i analizę wyników wykonano w arkuszu kalkulacyjnym EXCEL wykorzystując język VISUAL BASIC FOR APPLICATION. - Źródło:
-
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663 - Pojawia się w:
- Acta Universitatis Lodziensis. Folia Oeconomica
- Dostawca treści:
- Biblioteka Nauki