Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "completeness" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Completeness, Categoricity and Imaginary Numbers: The Debate on Husserl
Autorzy:
Aranda, Víctor
Powiązania:
https://bibliotekanauki.pl/articles/750024.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Husserl
completeness
categoricity
relative and absolute definiteness
imaginary numbers
Opis:
Husserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem of imaginary numbers, raising objections to both positions. Then, I suggest an interpretation of "absolute definiteness" as semantic completeness and argue that this notion does not suffice to explain Husserl's solution to the problem of imaginary numbers.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Arithmetically Complete Predicate Modal Logic
Autorzy:
Hao, Yunge
Tourlakis, George
Powiązania:
https://bibliotekanauki.pl/articles/2033850.pdf
Data publikacji:
2021-08-23
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Predicate modal logic
arithmetic completeness
logic GL
Solovay's theorem
equational proofs
Opis:
This paper investigates a first-order extension of GL called \(\textup{ML}^3\). We outline briefly the history that led to \(\textup{ML}^3\), its key properties and some of its toolbox: the \emph{conservation theorem}, its cut-free Gentzenisation, the ``formulators'' tool. Its semantic completeness (with respect to finite reverse well-founded Kripke models) is fully stated in the current paper and the proof is retold here. Applying the Solovay technique to those models the present paper establishes its main result, namely, that \(\textup{ML}^3\) is arithmetically complete. As expanded below, \(\textup{ML}^3\) is a first-order modal logic that along with its built-in ability to simulate general classical first-order provability―"\(\Box\)" simulating the the informal classical "\(\vdash\)"―is also arithmetically complete in the Solovay sense.
Źródło:
Bulletin of the Section of Logic; 2021, 50, 4; 513-541
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Post-style proof of completeness theorem for symmetric relatedness Logic S
Autorzy:
Klonowski, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/749984.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
normal forms
Post-style proof of completeness
relatedness logic
relating logic
Opis:
One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.
Źródło:
Bulletin of the Section of Logic; 2018, 47, 3
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Topological and Multi-Topological Frames in the Context of Intuitionistic Modal Logic
Autorzy:
Witczak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/749992.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
intuitionistic modal logic
neighbourhood semantics
topological semantics
Kripke frames
soundness and completeness
Opis:
We present three examples of topological semantics for intuitionistic modal logic with one modal operator □. We show that it is possible to treat neighborhood models, introduced earlier, as topological or multi-topological. From the neighborhood point of view, our method is based on differences between properties of minimal and maximal neighborhoods. Also we propose transformation of multitopological spaces into the neighborhood structures.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 3; 187-205
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identity, Equality, Nameability and Completeness
Autorzy:
Manzano, María
Moreno, Manuel Crescencio
Powiązania:
https://bibliotekanauki.pl/articles/750030.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
first-order logic
type theory
identity
equality
indiscernibility
comprehension
completeness
translations
nameability
Opis:
This article is an extended promenade strolling along the winding roads of identity, equality, nameability and completeness, looking for places where they converge. We have distinguished between identity and equality; the first is a binary relation between objects while the second is a symbolic relation between terms. Owing to the central role the notion of identity plays in logic, you can be interested either in how to define it using other logical concepts or in the opposite scheme. In the first case, one investigates what kind of logic is required. In the second case, one is interested in the definition of the other logical concepts (connectives and quantifiers) in terms of the identity relation, using also abstraction. The present paper investigates whether identity can be introduced by definition arriving to the conclusion that only in full higher-order logic a reliable definition of identity is possible. However, the definition needs the standard semantics and we know that with this semantics completeness is lost. We have also studied the relationship of equality with comprehension and extensionality and pointed out the relevant role played by these two axioms in Henkin’s completeness method. We finish our paper with a section devoted to general semantics, where the role played by the nameable hierarchy of types is the key in Henkin’s completeness method.
Źródło:
Bulletin of the Section of Logic; 2017, 46, 3/4
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Functional Completeness in CPL via Correspondence Analysis
Autorzy:
Leszczyńska-Jasion, Dorota
Petrukhin, Yaroslav
Shangin, Vasilyi
Jukiewicz, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/749866.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
correspondence analysis
invertible rules
classical propositional logic
functional completeness
sequent calculus
automated deduction
automated rules generation
Opis:
Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set (sets) of rules characterizing a two-argument Boolean function(s) to the negation fragment of classical propositional logic. The properties of soundness and completeness of the calculi are demonstrated. The proof of completeness is conducted by Kalmár's method. Most of the presented sequent-calculus rules have been obtained automatically, by a rule-generating algorithm implemented in Python. Correctness of the algorithm is demonstrated. This automated approach allowed us to analyse thousands of possible rules' schemes, hundreds of rules corresponding to Boolean functions, and to nd dozens of those invertible. Interestingly, the analysis revealed that the presented proof-theoretic framework provides a syntactic characteristics of such an important semantic property as functional completeness.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identity, equality, nameability and completeness. Part II
Autorzy:
Manzano, María
Moreno, Manuel Crescencio
Powiązania:
https://bibliotekanauki.pl/articles/749980.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
identity
equality
completeness
nameability
first-order modal logic
hybrid logic
hybrid type theory
equational hybrid propositional type theory
Opis:
This article is a continuation of our promenade along the winding roads of identity, equality, nameability and completeness. We continue looking for a place where all these concepts converge. We assume that identity is a binary relation between objects while equality is a symbolic relation between terms. Identity plays a central role in logic and we have looked at it from two different points of view. In one case, identity is a notion which has to be defined and, in the other case, identity is a notion used to define other logical concepts. In our previous paper, [16], we investigated whether identity can be introduced by definition arriving to the conclusion that only in full higher-order logic with standard semantics a reliable definition of identity is possible. In the present study we have moved to modal logic and realized that here we can distinguish in the formal language between two different equality symbols, the first one shall be interpreted as extensional genuine identity and only applies for objects, the second one applies for non rigid terms and has the characteristic of synonymy. We have also analyzed the hybrid modal logic where we can introduce rigid terms by definition and can express that two worlds are identical by using the nominals and the @ operator. We finish our paper in the kingdom of identity where the only primitives are lambda and equality. Here we show how other logical concepts can be defined in terms of the identity relation. We have found at the end of our walk a possible point of convergence in the logic Equational Hybrid Propositional Type Theory (EHPTT), [14] and [15].
Źródło:
Bulletin of the Section of Logic; 2018, 47, 3
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A New Arithmetically Incomplete First-Order Extension of Gl All Theorems of Which Have Cut Free Proofs
Autorzy:
Tourlakis, George
Powiązania:
https://bibliotekanauki.pl/articles/749974.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Modal logic
GL
first-order logic
proof theory
cut elimination
reflection property
disjunction property
quantified modal logic
QGL
arithmetical completeness
Opis:
Reference [12] introduced a novel formula to formula translation tool (“formula-tors”) that enables syntactic metatheoretical investigations of first-order modallogics, bypassing a need to convert them first into Gentzen style logics in order torely on cut elimination and the subformula property. In fact, the formulator tool,as was already demonstrated in loc. cit., is applicable even to the metatheoreticalstudy of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema ☐A → ☐∀ A of the logics M3and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations.  In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complexproofs in [2,8]).
Źródło:
Bulletin of the Section of Logic; 2016, 45, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unifiability and Structural Completeness in Relation Algebras and in Products of Modal Logic S5
Autorzy:
Dzik, Wojciech
Wróbel, Beniamin
Powiązania:
https://bibliotekanauki.pl/articles/749956.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
admissible rules
passive rules
unification
projective unification
almost structural completeness
n-modal logic S5n
relation algebras
representable diagonal-free cylindric algebras
Opis:
Unifiability of terms (and formulas) and structural completeness in the variety of relation algebras RA and in the products of modal logic S5 is investigated. Nonunifiable terms (formulas) which are satisfiable in varieties (in logics) are exhibited. Consequently, RA and products of S5 as well as representable diagonal-free n-dimensional cylindric algebras, RDfn, are almost structurally complete but not structurally complete. In case of S5n a basis for admissible rules and the form of all passive rules are provided.
Źródło:
Bulletin of the Section of Logic; 2015, 44, 1-2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies