Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "EDC" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On Model Selection in Some Regularized Linear Regression Methods
O wyborze postaci modelu w wybranych metodach regularyzowanej regresji liniowej
Autorzy:
Kubus, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/905647.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
model selection
EDC
regularization
linear models
feature selection
Opis:
A dynamic development of various regularization formulas in linear models has been observed recently. Penalizing the values of coefficients affects decreasing of the variance (shrinking coefficients to zero) and feature selection (setting zero for some coefficients). Feature selection via regularized linear models is preferred over popular wrapper methods in high dimension due to less computational burden as well as due to the fact that it is less prone to overfitting. However, estimated coefficients (and as a result quality of the model) depend on tuning parameters. Using model selection criteria available in R implementation does not guarantee that optimal model will be chosen. Having done simulation study we propose to use EDC criterion as an alternative.
W ostatnich latach można zaobserwować dynamiczny rozwój różnych postaci regularyzacji w modelach liniowych. Wprowadzenie kary za duże wartości współczynników skutkuje zmniejszeniem wariancji (wartości współczynników są ,,przyciągane” do zera) oraz eliminacją niektórych zmiennych (niektóre współczynniki się zerują). Selekcja zmiennych za pomocą regularyzowanych modeli liniowych jest w problemach wielowymiarowych preferowana wobec popularnego podejścia polegającego na przeszukiwaniu przestrzeni cech i ocenie podzbiorów zmiennych za pomocą kryterium jakości modelu (wrappers). Przyczyną są mniejsze koszty obliczeń i mniejsza podatność na nadmierne dopasowanie. Jednakże wartości estymowanych współczynników (a więc także jakość modelu) zależą od parametrów regularyzacji. Zaimplementowane w tym celu w programie R kryteria jakości modelu nie gwarantują wyboru modelu optymalnego. Na podstawie przeprowadzonych symulacji w artykule proponuje się zastosowanie kryterium EDC.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies