- Tytuł:
- K-nearest neighbour classification for symbolic data
- Autorzy:
- Pełka, Marcin
- Powiązania:
- https://bibliotekanauki.pl/articles/658927.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
- Opis:
- Reguła kNN (k Nearest Neighbours) została zaproponowana w pracy (Fix E., Hodges J. L. [1951]) i jest jednym z najlepszych klasyfikatorów dla danych w ujęciu klasycznym. W najprost- szym ujęciu metoda k-najbliższych sąsiadów polega na tym, że klasyfikowany obiekt jest zaliczany do klasy najliczniej reprezentowanej wśród jego k „najbliższych sąsiadów”. Jeżeli w tej samej odległości, co k-ty „sąsiad” znajdą się jeszcze inne elementy, to wszyscy ci „sąsiedzi” biorą udział w głosowaniu. W artykule zaprezentowano adaptację metody KNN dla danych symbolicznych, którą za- proponował zespół pod kierownictwem D. Malerby (por. Malerba i in. [2004]). Badania przepro- wadzono na danych symbolicznych w różnych modelach (generowanych za pomocą procedury cluster. Gen z pakietu clusterSim dla programu R). Modele te zawierały znaną liczbę klas. Dodatkowo do każdego modelu dodano różną liczbę zmiennych zakłócających i wartości odstających, które zniekształcają oryginalną strukturę klas.
- Źródło:
-
Acta Universitatis Lodziensis. Folia Oeconomica; 2010, 235
0208-6018
2353-7663 - Pojawia się w:
- Acta Universitatis Lodziensis. Folia Oeconomica
- Dostawca treści:
- Biblioteka Nauki