Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "źródła energii" wg kryterium: Temat


Tytuł:
Odnawialne źródła energii w Polsce - stan obecny
Renewable energy sources in Poland
Autorzy:
Zabochnicka-Świątek, M.
Sławik, L.
Powiązania:
https://bibliotekanauki.pl/articles/127359.pdf
Data publikacji:
2011
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
energia
odnawialne źródła energii
biopaliwa
energy
renewable energy
biofuels
Opis:
Termin odnawialne źródła energii dotyczy źródeł energii przyjaznych dla środowiska, których używanie i wykorzystanie cieszy się coraz większym zainteresowaniem na świecie. Odnawialnymi źródłami energii są: energia wód, energia geotermalna, energia słoneczna, energia wiatru, biomasa (drewno, słoma, odchody zwierząt), biopaliwo, biogaz. Istnieje szereg aktów prawnych Ministerstwa Gospodarki RP oraz dyrektyw Unii Europejskiej dotyczących odnawialnych źródeł energii. W niniejszej pracy dokonano analizy udziału poszczególnych źródeł odnawialnych w produkcji energii w Polsce z uwzględnieniem obowiązującego w kraju ustawodawstwa oraz przedstawiono wady i zalety poszczególnych źródeł odnawialnych.
Renewable energy sources are becoming more and more important to the environment and the economy in all countries. The term renewable energy sources (RES) concerns on environmentally friendly energy sources, which use do not involve their long-term deficits. Renewable energy are: water energy, geothermal energy, solar energy, wind energy, biomass (wood, straw, animal manure), biofuels and biogas. There are many legislations on renewable energy in Poland and European Union. Currently in Poland, the greatest potential among renewable energy sources is biomass (including biogas), wind and solar. The lowest share of renewable energy is characterized by geothermal energy and hydropower. The article presents the concept of renewable energy sources and biofuels, including the legislation in force in Poland.
Źródło:
Proceedings of ECOpole; 2011, 5, 2; 635-641
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bibobutanol - metody wytwarzania i oczyszczania
Bibobutanol - production and purification methods
Autorzy:
Kamiński, W.
Tomczak, E.
Górak, A.
Powiązania:
https://bibliotekanauki.pl/articles/126878.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
biobutanol
odnawialne źródła energii
ciecze jonowe
renewable energy sources
ionic liquids
Opis:
Perspektywa wyczerpania naturalnych zasobów produktów ropopochodnych oraz rosnące ceny tych surowców skłaniają do poszukiwania paliw z odnawialnych źródeł energii, czyli biopaliw. Główna uwaga do tej pory skupiana była na bioetanolu ze względu na dostępność surowców do jego wytwarzania i dobrze opracowane metody wydzielania i oczyszczania. Alkohol butylowy - biobutanol może być traktowany jako potencjalne biopaliwo. Biobutanol jest bardzo atrakcyjnym źródłem energii, gdyż - w przeciwieństwie do bioetanolu - jest niehigroskopijny, nie powoduje korozji i ma większą wartość opałową. Produkcja butanolu może odbywać się w procesie fermentacji zwanej ABE (od aceton, butanol, etanol), przeprowadzanej najczęściej przez bakterie Clostridium acetobutylicum. Podstawowy problem szerszego wykorzystania biobutanolu leży w jego wytwarzaniu z odpowiednią wydajnością, a ta z kolei jest limitowana wydzielaniem butanolu z brzeczki fermentacyjnej. Proces destylacji nie jest w tym przypadku możliwy do realizacji. Klasyczna ekstrakcja wymaga zastosowania cieczy albo palnych, albo toksycznych. W celu wydzielania i oczyszczania biobutanolu proponuje się zastosowanie cieczy jonowych IL. Wykorzystanie cieczy jonowych do ekstrakcji butanolu (usuwania ze środowiska fermentacji) może być zrealizowane albo poprzez bezpośrednie zastosowanie cieczy w bioreaktorze i oddzielenie butanolu na zewnątrz bioreaktora, albo poprzez wyprowadzenie brzeczki fermentacyjnej na zewnątrz bioreaktora i oddzielanie butanolu w kontraktorze membranowym.
The prospect of depletion of natural resources, petroleum products and rising prices of raw materials tend to look for fuels from renewable energy sources and biofuels. The focus so far has been on bioethanol due to the availability of raw materials for its production and well-developed methods for isolation and purification. Butyl alcohol - biobutanol can be regarded as a potential biofuel. Biobutanol is a very attractive energy source because - as opposed to the bioethanol - is non-hygroscopic, does not cause corrosion and has a higher calorific value. Production of butanol may be made by a fermentation process called ABE (from acetone, butanol, ethanol), carried out mostly by the bacterium Clostridium acetobutylicum. The basic problem of wider use of biobutanol lies in its production with sufficient efficiency and this in turn is limited by separation of butanol from fermentation broth. The distillation process is not applicable. The classical extraction requires the use of a flammable or toxic liquid. For separation and purification of biobutanol it is proposed to apply ionic liquids. Use of ionic liquids for the extraction of butanol (to remove from the fermentation environment) can be achieved either through direct application of the liquid in the bioreactor and separation of butanol on the outside of bioreactor or through directing fermentation broth outside the bioreactor and separation of butanol in the membrane contractor.
Źródło:
Proceedings of ECOpole; 2010, 4, 2; 409-411
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Initial assessment of the power generation potential of selected hydropower plants in the Dolnoslaskie and Opolskie provinces
Wstępna ocena potencjału energetycznego wybranych elektrowni wodnych w województwach Dolnośląskim i Opolskim
Autorzy:
Wiatkowski, M.
Kasperek, R.
Powiązania:
https://bibliotekanauki.pl/articles/126408.pdf
Data publikacji:
2012
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
renewable energy sources
watercourse power and energy
odnawialne źródła energii
moc i energia cieku
Opis:
Arrangements made at the latest EU climate and energy summits as well as the Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources set out the rules for how Poland is to achieve the 15% target of total primary energy from renewables by 2020. The share of RES in national energy consumption (150 TWh) is estimated at 8.6 TWh in 2009 (5.7%) and 12 TWh in 2011 (8%). The authors studied selected rivers in the Dolnoslaskie and Opolskie provinces in terms of their capability for hydropower generation. To this end, locations were identified on the Odra, Nysa Klodzka and Nysa Luzycka, in which hydropower plants might be built or opened. Calculations indicate that the total theoretical power capacity of proposed power plant locations and the average energy of investigated watercourses stand at about 21.653 MW and 189.6 GWh/year, respectively. In view of the requirement of promoting the use of RES, the authors propose to carry out a comprehensive study and to calculate the hydraulic parameters and/or hydropower indicators for all the watercourses located in the Dolnoslaskie and Opolskie provinces.
Ustalenia z ostatnich szczytów klimatyczno-energetycznych UE oraz Dyrektywa Parlamentu Europejskiego i Rady z 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych określają zasady dojścia przez Polskę w 2020 r. do 15% udziału tej energii w całej energii pierwotnej. Udział energii elektrycznej odnawialnej w krajowym zużyciu energii (150 TWh) wynosił: 8,6 TWh w roku 2009 (5,7%) oraz 12 TWh w 2011 roku (8%). Autorzy przebadali wybrane rzeki województw dolnośląskiego i opolskiego w aspekcie ich hydroenergetycznego wykorzystania. W tym celu wytypowano lokalizacje na Odrze, Nysie Kłodzkiej i Nysie Łużyckiej, gdzie można wybudować lub odtworzyć elektrownie wodne. Z obliczeń wynika, że dla proponowanych lokalizacji pod elektrownie sumaryczna moc teoretyczna i energia średnia dla rozpatrywanych cieków będą na poziomie 21,653 MW i 189,6 GWh/rok. W aspekcie wymogów promowania odnawialnych źródeł energii (OZE) autorzy proponują przeprowadzenie kompleksowych badań i obliczeń hydrologicznych parametrów hydroenergetycznych dla wszystkich cieków zlokalizowanych w województwach dolnośląskim i opolskim.
Źródło:
Proceedings of ECOpole; 2012, 6, 2; 552-558
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania właściwości fizykochemicznych kopolimeru pod kątem recyklingu modułów fotowoltaicznych
Research on physicochemical properties of EVA copolymer for recycling of photovoltaic modules
Autorzy:
Radziemska, E.
Ostrowski, P.
Janik, H.
Leszkowski, K.
Sielicki, P.
Powiązania:
https://bibliotekanauki.pl/articles/126225.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
ogniwa fotowoltaiczne
kopolimery
EVA
recykling
odnawialne źródła energii
recycling
copolymers
photovoltaic solar cells
renewable energy
Opis:
Ogniwa fotowoltaiczne zamyka się w warstwach ochronnych, chroniących je przed szkodliwym oddziaływaniem atmosferycznym. Proces umieszczania ogniw PV w warstwie ochronnej określa się mianem laminowania modułu. Obecnie w procesie laminowania ogniw wykorzystuje się tworzywa sztuczne, polimery (termoplasty). Najczęściej stosowany jest do tego celu kopolimer etylenu z octanem winylu (EVA), który wytwarzany jest w postaci cienkiej folii o grubości nieprzekraczającej kilkuset mikrometrów. Chroni on ogniwa przed szkodliwym oddziaływaniem czynników atmosferycznych. W celu przeprowadzenia recyklingu - odzyskania i powtórnego zastosowania krzemu, z którego wytworzono ogniwa PV - należy oddzielić je z warstw ochronnych. Przed recyklingiem ogniw PV konieczny jest zatem proces umożliwiający delaminację (oddzielenie) ogniw od kopolimeru EVA. W celu opracowania wydajnego i taniego procesu delaminowania wyeksploatowanych, uszkodzonych lub niespełniających wymagań jakościowych modułów PV przeprowadzono badania właściwości fizycznych, chemicznych i mechanicznych tego kopolimeru. Rozważono dwa sposoby usuwania warstwy EVA z ogniw PV: obejmujące procesy chemiczne oraz termiczne.
Solar cell modules employ ethylene vinyl-polymer acetate (EVA) as a sealant. It is used in the form of foil of the thickness less than several hundred micrometers. The process of fixing cells in the protective layer is called encapsulation. To fulfil the recycling process of silicon for the second use during the production of solar modules, cells have to be released from the EVA layer - the degradation of copolymer is needed. The protective layer has to fulfil several basic functions. These include providing structural support and physical isolation of the solar cells, to maintain electrical isolation and to be highly transparent in a selected spectral region, according to the cell technology used. For the devising of efficient and cheap method for EVA degradation, the examination of the copolymer properties was carried out with the special attention given to the optical and mechanical properties. Two methods of EVA layer were considered: with the use of chemical and thermal treatment.
Źródło:
Proceedings of ECOpole; 2010, 4, 1; 187-192
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ionic Liquids for the Extraction of n-Butanol from Aqueous Solutions
Ciecze jonowe w ekstrakcji n-butanolu z roztworów wodnych
Autorzy:
Kubiczek, A.
Kamiński, W.
Powiązania:
https://bibliotekanauki.pl/articles/388522.pdf
Data publikacji:
2013
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
liquid-liquid extraction
ionic liquids
biobutanol
renewable resources
ekstrakcja ciecz-ciecz
ciecze jonowe
odnawialne źródła energii
Opis:
The article describes the extraction of n-butanol from four-component aqueous solutions, also containing acetone and ethanol. All of these three chemicals are the main constituents of the so-called fermentation broth – a product of ABE (Acetone-Butanol-Ethanol) fermentation process. Nowadays, ABE fermentation, which is one of the oldest butanol production technologies, seems to be a viable alternative to petrochemical methods that have so far dominated the industry. Such considerations are driven by the steady depletion of fossil fuels, and thus, worldwide tendencies to use renewable resources instead, but also by the popularization of clean production and green chemistry principles. The physicochemical properties of biobutanol are very similar to that of gasoline and diesel fuel. Therefore, there exists a real potential for its widespread use as a fuel additive, if not a direct application in internal combustion engines. For that reason, the effective separation of biochemically derived butanol may have a great impact on fuel production technology, which is by far crude oil oriented. The main challenges of applying traditional solvents in liquid-liquid extraction are their toxicity and usually high volatility that prevents an economically justified partitioning of the extract components. Hence, there arises a growing interest in non-volatile, thermally stable and water immiscible ionic liquids. Properties of these new ‘designer solvents’ have not been fully recognized yet, but the full range of their possible applications may appear as unlimited. In this study, phase separation research has been made in five-component systems of water, acetone, butanol, ethanol and ionic liquid. Two different ionic liquids have been used: 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][Tf2N]. Experimental results confirm the efficient recovery of n-butanol from aqueous solutions when volumes of both liquid phases are approximately equal.
Przedmiotem artykułu jest proces ekstrakcji n-butanolu z czteroskładnikowych roztworów wodnych zawierających ponadto aceton i etanol. Wymienione substancje są głównymi składnikami tzw. brzeczki fermentacyjnej stanowiącej produkt fermentacji ABE (acetonowo-butanolowo-etanolowej). Fermentacja ABE, jako jedna z najstarszych metod uzyskiwania biobutanolu stosowanych na skalę przemysłową, jest obecnie rozważana jako alternatywa dla dominujących w przemyśle procesów petrochemicznych. Znacząco przyczynia się ku temu perspektywa wyczerpania dostępnych zapasów paliw kopalnych, jak również podejmowane na szeroką skalę próby wdrażania zasad czystej produkcji i korzystania z odnawialnych źrodeł energii. Z uwagi na bardzo korzystne właściwości fizykochemiczne istnieją realne możliwości bezpośredniego zastosowania biobutanolu w silnikach spalinowych, bądź wykorzystania go jako dodatku do oleju napędowego i benzyny. Skuteczna separacja biobutanolu pozyskiwanego przy pomocy metod biochemicznych może mieć zatem ogromny wpływ na rozwój technologii produkcji paliw płynnych. Problemem przy stosowaniu klasycznych rozpuszczalników w ekstrakcji ciecz-ciecz jest często ich toksyczność, jak również wysoka lotność uniemożliwiająca opłacalny ekonomicznie rozdział ekstraktu. Dlatego też w kręgu zainteresowania pojawiają się niskolotne i stabilne termicznie ciecze jonowe nierozpuszczalne w roztworach wodnych. Właściwości cieczy jonowych jako substancji stosunkowo nowych nie są jeszcze dokładnie poznane, jednak z uwagi na szeroki wachlarz potencjalnych zastosowań budzą one coraz większe zainteresowanie, a możliwości ich „projektowania” mogą wydawać się nieograniczone. Przeprowadzono badania równowagi ekstrakcyjnej w układach zawierających wodę, aceton, butanol, etanol i ciecz jonową. Wykorzystano w tym celu dwie ciecze jonowe: heksafluorofosforan 1-heksylo-3-metyloimidazolu oraz bis(trifluorometylosulfonylo)imid 1-butylo-3-metyloimidazolu. Wyniki eksperymentów potwierdzają wysoką skuteczność procesu ekstrakcji n-butanolu przy zbliżonych objętościach roztworu surowego i ekstrahenta.
Źródło:
Ecological Chemistry and Engineering. A; 2013, 20, 1; 77-87
1898-6188
2084-4530
Pojawia się w:
Ecological Chemistry and Engineering. A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ionic liquids for the extraction of n-butanol from aqueous solutions
Ciecze jonowe w ekstrakcji n-butanolu z roztworów wodnych
Autorzy:
Kubiczek, A.
Kamiński, W.
Powiązania:
https://bibliotekanauki.pl/articles/126670.pdf
Data publikacji:
2013
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
liquid-liquid extraction
ionic liquids
biobutanol
renewable resources
ekstrakcja ciecz-ciecz
ciecze jonowe
odnawialne źródła energii
Opis:
The article describes the extraction of n-butanol from four-component aqueous solutions, also containing acetone and ethanol. All of these three chemicals are the main constituents of the so-called fermentation broth - a product of ABE (Acetone-Butanol-Ethanol) fermentation process. Nowadays, ABE fermentation, which is one of the oldest butanol production techniques, seems to be a viable alternative to petrochemical methods that have so far dominated the industry. Such considerations are driven by the steady depletion of fossil fuels, and thus, worldwide tendencies to use renewable resources instead, but also by the popularization of clean production and green chemistry principles. The physicochemical properties of biobutanol are very similar to that of gasoline and diesel fuel. Therefore, there exists a real potential for its widespread use as a fuel additive or even for a direct application in internal combustion engines. For that reason, the effective separation of biochemically derived butanol may have a great impact on fuel production technology, which is by far crude oil oriented. The main challenges of applying traditional solvents in liquid-liquid extraction are their toxicity and usually high volatility that prevents an economically justified partitioning of the extract components. Hence there arises a growing interest in non-volatile, thermally stable and water immiscible ionic liquids. Properties of these new 'designer solvents' have not been fully recognized yet, but the full range of their possible applications may appear as unlimited. Phase separation research has been made in five-component systems of water, acetone, butanol, ethanol and ionic liquid. Two different ionic liquids have been used: 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][Tf2N]. Experimental results confirm highly efficient separation of n-butanol from aqueous solutions when volumes of both liquid phases are approximately equal.
Przedmiotem artykułu jest proces ekstrakcji n-butanolu z czteroskładnikowych roztworów wodnych zawierających ponadto aceton i etanol. Wymienione substancje są głównymi składnikami tzw. brzeczki fermentacyjnej stanowiącej produkt fermentacji ABE (acetonowo-butanolowo-etanolowej). Fermentacja ABE, jako jedna z najstarszych metod uzyskiwania biobutanolu stosowanych na skalę przemysłową, jest obecnie rozważana jako alternatywa dla dominujących w przemyśle procesów petrochemicznych. Znacząco przyczynia się do tego perspektywa wyczerpania dostępnych zapasów paliw kopalnych, jak również podejmowane na szeroką skalę próby wdrażania zasad czystej produkcji i korzystania z odnawialnych źrodeł energii. Z uwagi na bardzo korzystne właściwości fizykochemiczne istnieją realne możliwości bezpośredniego zastosowania biobutanolu w silnikach spalinowych bądź wykorzystania go jako dodatku do oleju napędowego i benzyny. Skuteczna separacja biobutanolu pozyskiwanego za pomocą metod biochemicznych może mieć zatem ogromny wpływ na rozwój technologii produkcji paliw płynnych. Problemem przy stosowaniu klasycznych rozpuszczalników w ekstrakcji ciecz-ciecz jest często ich toksyczność, jak również wysoka lotność uniemożliwiająca opłacalny ekonomicznie rozdział ekstraktu. Dlatego też w kręgu zainteresowania pojawiają się niskolotne i stabilne termicznie ciecze jonowe nierozpuszczalne w roztworach wodnych. Właściwości cieczy jonowych jako substancji stosunkowo nowych nie są jeszcze dokładnie poznane, jednak z uwagi na szeroki wachlarz potencjalnych zastosowań budzą one coraz większe zainteresowanie, a możliwości ich “projektowania” mogą wydawać się nieograniczone. Przeprowadzono badania równowagi ekstrakcyjnej w układach zawierających wodę, aceton, butanol, etanol i ciecz jonową. Wykorzystano w tym celu dwie ciecze jonowe: heksafluorofosforan 1-heksylo-3metyloimidazolu oraz bis(trifluorometylosulfonylo)imid 1-butylo-3-metyloimidazolu. Wyniki eksperymentów potwierdzają wysoką skuteczność procesu ekstrakcji n-butanolu przy zbliżonych objętościach roztworu surowego i ekstrahenta.
Źródło:
Proceedings of ECOpole; 2013, 7, 1; 125-131
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zagospodarowanie proszku krzemowego odzyskanego w procesach produkcji recyklingu uszkodzonych ogniw fotowoltaicznych
Utilization of silicon powder recovered in the PV cells production and recycling processes
Autorzy:
Radziemska, E.
Ostrowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/125936.pdf
Data publikacji:
2009
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
ogniwa fotowoltaiczne
krzem
recykling
energia słoneczna
odnawialne źródła energii
recycling
solar energy
silicon
photovoltaic solar cells
renewable energy
Opis:
Krystaliczny krzem pozostaje nadal dominującym materiałem do produkcji ogniw fotowoltaicznych na całym świecie. Uwzględniając takie czynniki, jak: straty w procesie wzrostu kryształu, straty na etapie topnienia, straty podczas mielenia, odrzuty na etapie kontroli jakości produktu, około 70% stanowi użyteczny materiał. Przyjmując straty, powstające podczas cięcia na płytki na poziomie 35%, ilość odpadu krzemowego w postaci proszku wynosi 8,6 Gg rocznie. Proszek krzemowy, który można odzyskać z wyeksploatowanych, zużytych czy mechanicznie uszkodzonych ogniw i modułów fotowoltaicznych z krystalicznego krzemu, może znacząco zwiększyć ilość obecnie wykorzystywanego odpadu krzemowego w postaci proszku, powstającego przy cięciu. Obecnie wyeksploatowane i zużyte moduły PV trafiają na składowiska komunalne. Od kilku już lat rozwój rynku fotowoltaicznego utrzymuje się na poziomie 30% rocznie. Energetyczne urządzenia fotowoltaiczne projektowane są na 25-30-letni okres eksploatacji i po tym okresie staną się opadem nie tyle groźnym dla środowiska, co zawierającym cenne materiały, między innymi aluminium, srebro i dużej czystości krzem. W artykule przedstawiono wyniki analizy proszku krzemowego różnego pochodzenia i wskazano możliwości technologiczne zagospodarowania proszku krzemowego: jako podstawowego surowca do produkcji nowych ogniw fotowoltaicznych, jako dodatku do stali stopowych, poprawiających ich właściwości mechaniczne (twardość, wytrzymałość na rozciąganie, udarność) oraz jako materiału do wytwarzania ceramiki, z proszków niemetali.
Crystalline silicon continues to be the dominant material for PV production worldwide. Two of the main issues for the silicon photovoltaic industry there are need to solve are: the cost per watt of power generated and the energy payback for PV systems. This cost could be considerably reduced if losses in the sawing process could be reduced or the silicon waste powder (kerf) could be reused, what required special, cost-effective technology. Allowing for factor such as: crystal growth yield loss, unusable melt scrap, grinding losses and recycling of single crystal rejects as feedstock for the PV industry, it is estimated that about 70% of produced silicon represents valuable PV material. Estimating sawing kerf loss produced by wafering silicon ingots on the level of 35%, the amount of silicon waste is about 8,6 Gg p.a. Significant share, which could be in the nearest future carried in to the silicon waste powder, is silicon powder from the recycled solar cells and modules. Within the last few years a strong growth of the photovoltaic market can be observed worldwide. In the paper the results of silicon powder properties analysis are presented. Technological possibilities in the field of reuse of the silicon waste powder of the different origin are indicated. Silicon powder could be utilized as: the raw material in the photovoltaic industry, the addition to alloy steel, improving their mechanical properties (hardness, tensile strength, impact strength) and as the material for ceramic, based on non-metal powders manufacturing.
Źródło:
Proceedings of ECOpole; 2009, 3, 1; 191-197
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Obróbka chemiczna, termiczna oraz laserowa w recyklingu ogniw i modułów fotowoltaicznych z krystalicznego krzemu
Chemical, thermal and laser treatment in recycling of photovoltain solar cells and modules from crystalline silicon
Autorzy:
Radziemska, E.
Ostrowski, P.
Cenian, A.
Sawczak, M.
Powiązania:
https://bibliotekanauki.pl/articles/126610.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
ogniwa fotowoltaiczne
krzem
recykling
energia słoneczna
odnawialne źródła energii
recycling
solar energy
silicon
photovoltaic solar cells
renewable energy
Opis:
W ostatnich latach systemy fotowoltaiczne stają się bardzo popularne na całym świecie jako korzystne dla środowiska rozwiązanie problemów energetycznych. Zagadnienie zagospodarowania zużytych elementów systemów fotowoltaicznych, których ilość w przyszłości może być znaczna, nie zostało do tej pory opracowane. Konieczne jest znalezienie optymalnej metody recyklingu i ponownego wykorzystania wycofanych z użycia elementów składowych systemów PV. W artykule przedstawiono wybrane sposoby prowadzenia recyklingu zużytych lub uszkodzonych modułów i ogniw fotowoltaicznych oraz praktyczne wyniki prac eksperymentalnych z wykorzystaniem metod: chemicznych, termicznych oraz techniki laserowej. Opisano wady i zalety stosowanych technik, pomocne przy optymalizowaniu metody recyklingu dla zastosowań komercyjnych. Proces recyklingu modułów PV wymaga zastosowania dwóch zasadniczych etapów: separacji ogniw PV i oczyszczania ich powierzchni. W procesie separacji ogniwa wchodzące w skład modułu PV zostają rozdzielone w efekcie zastosowania procesów termicznych lub chemicznych. W następnej fazie ogniwa poddaje się procesowi, w którym usuwa się niepożądane warstwy: antyrefleksyjną, metalizację oraz złącze n-p, aby uzyskać podłoże krzemowe, nadające się do powtórnego zastosowania. Etap oczyszczania powierzchni krzemowych ogniw PV prowadzono z zastosowaniem obróbki chemicznej oraz techniki laserowej.
In recent years, photovoltaic power generation systems have been gaining unprecedented attention as an environmentally beneficial method to solve the energy problem. From the economic point view the pure silicon, which can be recapture from the used cells, is the most important material due to its cost and shortage. In the article selected methods of used or damaged module and cells recycling and experimental results are presented. Advantages and disadvantages of these techniques are described, what could be helpful during the optimization of the method. The recycling process of PV module consists of two main steps: separation of cells and its refining. During the first step cells are separated due to the thermal or chemical methods usage. Next, the separated cells are refining. During this process useless layers are removed: antireflection, metallization and p-n junction layer, for silicon base - ready to the next use - gaining. This refining step was realized with the use of chemical and laser treatment as well.
Źródło:
Proceedings of ECOpole; 2010, 4, 1; 181-185
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cost and benefit of energetic plants - challenges for environment friendly management
Koszty i korzyści wykorzystania roślin energetycznych - wyzwania dla przyjaznego zarządzania środowiskiem
Autorzy:
Masarovičová, E.
Král’ová, K.
Peško, M.
Powiązania:
https://bibliotekanauki.pl/articles/126668.pdf
Data publikacji:
2009
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
alternative energy source
bioethics
biofuels
energetic plants
environment
phytoremediation
alternatywne źródła energii
bioetyka
biopaliwa
rośliny energetyczne
środowisko
fitoremediacja
Opis:
Biomass energy has been recognized as one of the most promising and most important renewable energy sources in near future. It was emphasized that besides of woody plant species as energetic plants can be also used both crops (mainly maize, rapeseed, sunflower, soybean, sorghum, sugarcane) and non-food plants (e.g. switchgrass, jatropha, algae). Energetic plant was characterized as a plant grown as a low cost and low maintenance harvest used to make biofuels, or directly exploited for its energy content (heating or electric power production). Moreover, by-products (green waste) of crops and non-food plants can be also used to produce biofuels. It was stressed that European production of biodiesel from energy crops has grown steadily in the last decade, principally focused on rapeseed used for oil as a substance in FAME (fatty acid methyl ester) production. Similar tendency was observed for bioethanol (as a biocomponent in gasoline) prepared mainly from maize or cereals. At present bioethanol and biodiesel primarily produced from the crops (maize and rapeseed) are used in the traffic. However, in the past these crops were used only as a food. Consequently, a new ethical problem appeared: discrepancy between utilization of maize and rapeseed as a food or as an alternative source of energy. New biotechnological approach showed that energetic plants have also significant application for environment friendly management, mainly in phytoremediation technology. Phytoremediation was presented as a cleanup technology belonging to the cost-effective and environment-friendly biotechnology. Thus several types of phytoremediation technologies being used today were briefly outlined.
Energia biomasy jest uznana za jedno z najbardziej obiecujących i najważniejszych odnawialnych źródeł energii. Podkreślono, że oprócz gatunków roślin drzewiastych, jako rośliny energetyczne mogą być również wykorzystywane uprawy (głównie kukurydzy, rzepaku, słonecznika, soi, sorgo, trzciny cukrowej) i inne rośliny niespożywcze (np. proso, jatrofa, glony). Uprawa i zbiór roślin energetycznych wymaga niewielkich kosztów, a wykorzystuje się je do produkcji biopaliw lub bezpośredniego uzyskania energii (ogrzewanie lub produkcja energii elektrycznej). Ponadto, produkty uboczne upraw (odpady zielone) i inne rośliny niespożywcze mogą być także wykorzystywane do produkcji biopaliw. Podkreślono, że europejska produkcja biodiesla z roślin energetycznych stale rośnie w ostatnim dziesięcioleciu, koncentrując się głównie na oleju rzepakowym stosowanym w produkcji FAME (estry metylowe kwasów tłuszczowych). Podobne tendencje zaobserwowano w przypadku bioetanolu (jako biokomponentu benzyny), otrzymywanego przede wszystkim z kukurydzy i zbóż. Obecnie bioetanol i biodiesel, wytwarzane głównie z kukurydzy i rzepaku, są stosowane w transporcie. Natomiast w przeszłości rośliny te były używane tylko jako żywność. W konsekwencji pojawiły się nowe problemy etyczne wynikające z rozbieżność między wykorzystaniem kukurydzy i rzepaku jako żywności lub jako alternatywnego źródła energii. Nowe podejście biotechnologiczne pokazuje, że rośliny energetyczne mają również duże znaczenie dla przyjaznego zarządzania środowiskiem, szczególnie w fitoremediacji. Oczyszczanie za pomocą fitoremediacji jest uważane za technologię oszczędną i przyjazną dla środowiska. W skrócie zaprezentowano niektóre z obecnie wykorzystywanychrodzajów fitoremediacji.
Źródło:
Proceedings of ECOpole; 2009, 3, 2; 259-265
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Current Trends in Recycling of Photovoltaic Solar Cells and Modules Wast
Recykling Zużytych Ogniw I Modułów Fotowoltaicznych - Stan Obecny
Autorzy:
Klugmann-Radziemska, E.
Powiązania:
https://bibliotekanauki.pl/articles/106398.pdf
Data publikacji:
2012
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
recycling
photovoltaic cells
photovoltaic modules
waste
renewable energy sources
recykling
ogniwa fotowoltaiczne
moduły fotowoltaiczne
zagospodarowanie odpadów
odnawialne źródła energii
Opis:
In comparison to other energy producing techniques, photovoltaics (PV) is one of the most promising options: no emission of any matter into the environment during operation; extremely long operation period (estimated average: 25 years), minimum maintenance, robust technique, aesthetic aspects. The use of photovoltaics is rapidly increasing, and the respective market is developing accordingly. Although PV manufacturing equipment is now excluded from the scope of RoHS, according to the Kyoto Protocol and the EU Directives WEEE and RoHS the use of hazardous substances in electric/electronic devices has to be reduced stepwise to approximately zero level. Furthermore, a total recycling of nearly all materials involved is aimed. Thus, major attention is directed to avoidance of environmental pollution through combustion or landfill, to regain valuable material, to promote the development and use of renewable energy sources. As the lifetime of PV cells themselves is much longer than that of PV modules and the manufacturing process of cells requires much energy consumption, the reuse of base material of the cells is economically justified. The aim of this work was to develop and evaluate existing methods of PV cells and modules recycling. The article discusses the main outcomes and analyses the significance of recycling in relation to the environmental profile of the production and total life cycle of photovoltaic cells and modules.
W porównaniu do innych metod produkcji energii, technologia fotowoltaiczna jest jedną z najbardziej obiecujących opcji: brak emisji z substancji do środowiska podczas pracy, bardzo długi okres eksploatacji (szacowany średnio na 25 lat), minimalna konieczność konserwacji, solidna technika, atuty estetyczne. Rynek modułów fotowoltaicznych na świecie rozwija się intensywnie, a stale rosnący udział modułów fotowoltaicznych (PV) w światowej produkcji energii elektrycznej powoduje, iż zwiększająca się ilość odpadów - w postaci zużytych lub uszkodzonych ogniw i modułów PV - spowoduje w najbliższych latach konieczność bardziej racjonalnego ich zagospodarowania. Aby moduły fotowoltaiczne pozostały bez negatywnego wpływu na środowisko, konieczne jest wprowadzenie długofalowej strategii obejmującej kompletny „cykl życia” wszystkich elementów systemu: od fazy produkcji, poprzez montaż i eksploatację aż do utylizacji. Recykling odpadów produkcyjnych i zużytych systemów jest istotnym elementem tej strategii. Korzyści środowiskowe recyklingu są związane nie tylko z ograniczeniem miejsca na składowiskach odpadów, ale również z oszczędnością energii, surowców i ograniczeniem emisji. Celem pracy było przedstawienie i ocena istniejących metod recyklingu ogniw i modułów fotowoltaicznych oraz wpływu tego procesu na środowisko naturalne.
Źródło:
Chemistry-Didactics-Ecology-Metrology; 2012, 17, 1-2; 89-95
2084-4506
Pojawia się w:
Chemistry-Didactics-Ecology-Metrology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Roczna wydajność instalacji PV zamontowanej na dachu budynku dydaktycznego Uniwersytetu Opolskiego
Annual efficiency of a PV installation mounted on the roof of the University of Opole didactic building
Autorzy:
Świsłowski, P.
Dębska, L.
Rajfur, M.
Rodziewicz, T.
Powiązania:
https://bibliotekanauki.pl/articles/126628.pdf
Data publikacji:
2018
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
alternatywne źródła energii
fotowoltaika
PV
moduł fotowoltaiczny
uzysk energetyczny
ekologia
renewable energy sources
photovoltaics
photovoltaic module
energy yield
ecology
Opis:
Celem badań była analiza i ocena sprawności pracy instalacji fotowoltaicznej zamontowanej na dachu budynku dydaktycznego Uniwersytetu Opolskiego mieszczącego się przy ul. Kominka 6 w Opolu. Zakres pracy obejmował ocenę: energetyczną - uzysku energetycznego (ilość wyprodukowanego prądu a położenie geograficzne paneli fotowoltaicznych) i ekologiczną - redukcja emisji szkodliwych substancji niewyemitowanych do aerozolu atmosferycznego z powodu produkcji prądu przez instalację PV, a niedostarczonej przez elektrownię opalaną węglem. Badania wykazały dobry wynik uzysku energetycznego w ciągu roku - 5,30 MWh energii z tego systemu oraz znaczną redukcję emisji CO2 do atmosfery - 4,27 Mg/rok, co potwierdza ekologiczny charakter instalacji fotowoltaicznych.
The objective of the carried out study was to analysis of operation and effectiveness assessment of the photovoltaic system installed on the roof of the University of Opole building located at Kominka 6 street in Opole. The scope of the study included an assessment of: power generation - energy yield (quantity of generated electricity and geographical location of photovoltaic panels) and ecological - reduction of emission of harmful substances not emitted to the atmospheric aerosol for the production of electricity by the PV installation and not provided by the coal-fired power plant. The studies showed good result of energy production during the year 5.30 MWh energy from this system, and significant reduction of CO2 emission to atmosphere 4.27 Mg/year which indicates the ecological motivation of projects fort the installation of renewable energy sources.
Źródło:
Proceedings of ECOpole; 2018, 12, 1; 253-263
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pozyskiwanie biogazu z odpadów deponowanych na składowiskach
Receiving of biogas from the wastes deposited on the storage yards
Autorzy:
Zawieja, I.
Wolski, P.
Wolny, L.
Powiązania:
https://bibliotekanauki.pl/articles/126058.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
biogaz
metan
stabilizacja beztlenowa
składowisko odpadów
odnawialne źródła energii (OZE)
biogas
methane
oxygen-free stabilization
waste dump
renewable energy sources
Opis:
Składowisko jako obiekt uciążliwy dla środowiska może oddziaływać niekorzystnie na wszystkie jego elementy, bezpośrednio na powietrze, powierzchnię ziemi wraz z glebą, wody powierzchniowe i podziemne oraz pośrednio na zdrowie ludzi mieszkających w jego otoczeniu, a także świat zwierząt i roślin. W Polsce składowiska odpadów (wraz z kopalniami i oczyszczalniami ścieków) mają dominujący wpływ na emisję metanu z tzw. źródeł antropogennych. Metan jest drugim po ditlenku węgla gazem odpowiedzialnym za zjawisko cieplarniane. Ponadto jest wartościowym nośnikiem energii, wytwarzanym z substancji organicznych podczas złożonego pod względem biochemicznym procesu, jakim jest stabilizacja beztlenowa. Skład biogazu w pionowym przekroju złoża nie jest stały. Ilość i jakość gazu wysypiskowego zależą głównie od morfologii i procentowej zawartości części organicznych deponowanych odpadów oraz od ich wilgotności, efektywnego zagęszczania, a także przykrycia izolacyjnego w trakcie eksploatacji składowiska. Jak podają dane literaturowe, ze 100 m3 biogazu można wyprodukować około 560÷600 kWh energii elektrycznej. Ze składowiska o powierzchni około 15 ha można uzyskać od 20 do 60 GWh energii w ciągu roku, jeżeli roczna masa składowanych odpadów to około 180 tys. ton. Poprzez swoją wielostronność i wielowymiarowość odnawialne źródła energii mogą znacząco przyczynić się zarówno do rozwoju polityki regionalnej kraju, wpływając bezpośrednio na zwiększenie poziomu bezpieczeństwa energetycznego, jak również dotrzymanie wprowadzonych przez Unię Europejską (UE) limitów emisyjnych, dotyczących między innymi wytwarzania gazów cieplarnianych. W ratyfikowanym przez Polskę Protokole z Kioto z 1997 r., kraje UE zobowiązały się zredukować do roku 2012 emisję gazów cieplarnianych o 8%. W artykule podjęto problematykę dotyczącą zarówno potencjału energetycznego biogazu, instalacji służących do ujmowania biogazu oraz jego zagospodarowania, jak również dokonano przeglądu aktów prawnych dotyczących wykorzystania biogazu powstającego na składowiskach odpadów.
The waste dump as the place, which is burdensome for the environment, can have disadvantageous influence on all its elements. It can affect directly: the air, the ground surface together with the soil, the surface andthe underground waters and it can affect indirectly: the health of the population which lives in its surrounding and the animal world. In Poland the waste dumps have (together with mines and water treatment plants) have dominant influence on the methane emission from so-called anthropogenic sources. The methane is the second gas, after carbon dioxide, which is responsible for the greenhouse effect. What is more, it is a valuable source of energy carrier, which is produced from the organic substances during the sophisticated process, as regards biochemistry, called oxygen-free stabilization. The content of gas in the vertical structure section of the deposit is not stable. The amount and the quality of waste dump gas depend mainly on the morphology and on the percentage content of the organic parts of the deposited wastes and on their humidity, on their effective concentration and on the insulating cover during the exploitation of the waste dump. According to the literature data, from 100 m3 of biogas there can be produced about 560÷600 kWh of electric energy. The waste dump of the surface: 15 ha can give from 20 GWh up to 60 GWh of energy during a year if the year-long mass of the deposited wastes is about 180 000 tons. The multilateral and multidimensional character of the renewable energy sources causes that they can have a significant influence both on the development of regional politics of the country, directly affecting the increase of the country energy safety level. They can also have an influence on the keeping to the emission limits which were imposed by European Union (EU), concerning, among others, the production of greenhouse gases. In the Kyoto report ratified in 1997 by Poland, all countries of EU are obliged to reduce the emission of greenhouse gases of 8% up to 2012. In the article there have been discussed the issue concerning both the biogas energy potential and the management of biogas as well as there have been reviewed the legal acts concerning the usage of biogas which arises on the wastes dumps.
Źródło:
Proceedings of ECOpole; 2010, 4, 2; 535-539
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recovering of Biogass from Waste Deposited on Landfills
Pozyskiwanie biogazu z odpadów deponowanych na składowiskach
Autorzy:
Zawieja, I.
Wolski, P.
Wolny, L.
Powiązania:
https://bibliotekanauki.pl/articles/389678.pdf
Data publikacji:
2011
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
biogaz
metan
stabilizacja beztlenowa
składowisko odpadów
odnawialne źródła energii
biogas
methane
oxygen-free stabilization
waste dump
renewable energy sources (RES)
Opis:
The waste dump as the place, which is burdensome for the environment, can have disadvantageous influence on all its elements. It can affect directly: the air, the ground surface together with the soil, the surface and the underground waters and it can affect indirectly: the health of the population which lives in its surrounding and the animal world. In Poland the waste dumps (together with mines and water treatment plants) have dominant influence on the methane emission from so-called anthropogenic sources. The methane is the second gas, after carbon dioxide, which is responsible for the greenhouse effect. What is more, it is a valuable source of energy carrier, which is produced from the organic substances during the sophisticated process, as regards biochemistry, called oxygen-free stabilization. The content of gas in the vertical structure section of the deposit is not stable. The amount an the quality of waste dump gas depend mainly on the morphology and on the percentage content of the organic parts of the deposited wastes and on their humidity, on their effective concentration and on the insulating cover during the exploitation of the waste dump. According to the literature data, from 100 m3 of biogas there can be produced about 560–600 kWh of electric energy. The waste dump of the surface: 15 ha can give from 20 GWh up to 60 GWh of energy during a year if the year-long mass of the deposited wastes is about 180 000 Mg. The multilateral and multidimensional character of the renewable energy sources causes that they can have a significant influence both on the development of regional politics of the country, directly affecting the increase of the country energy safety level. They can also have an influence on the keeping to the emission limits which were imposed by European Union (EU), concerning, among others, the production of greenhouse gases. In the Kyoto report ratified in 1997 by Poland, all countries of EU are obliged to reduce the emission of greenhouse gases of 8 % up to 2012. In the article there have been discussed the issue concerning both the biogas energy potential and the management of biogas as well as there have been reviewed the legal acts concerning the usage of biogas which arises on the wastes dumps.
Składowisko jako obiekt uciążliwy dla środowiska może oddziaływać niekorzystnie na wszystkie jego elementy, bezpooerednio na powietrze, powierzchnię ziemi wraz z glebą, wody powierzchniowe i podziemne oraz pośrednio na zdrowie ludnooeci zamieszkałej w jego otoczeniu, jak również świat zwierząt. W Polsce składowiska odpadów (wraz z kopalniami i oczyszczalniami ścieków) mają dominujący wpływ na emisję metanu z tzw. źródeł antropogennych. Metan jest drugim po ditlenku węgla gazem odpowiedzialnym za zjawisko cieplarniane. Ponadto jest wartościowym nośnikiem energii, wytwarzanym z substancji organicznych podczas złożonego pod względem biochemicznym procesu, jakim jest stabilizacja beztlenowa. Skład biogazu w pionowym przekroju złoża nie jest stały. Ilość i jakość gazu składowiskowego zależy głównie od morfologii i procentowej zawartości części organicznych deponowanych odpadów oraz od ich wilgotności, efektywnego zagęszczania, a także przykrycia izolacyjnego w trakcie eksploatacji składowiska. Jak podają dane literaturowe, ze 100 m3 biogazu można wyprodukować około 560–600 kWh energii elektrycznej. Ze składowiska o powierzchni około 15 ha można uzyskać od 20 do 60 GWh energii w ciągu roku, jeżeli roczna masa składowanych odpadów to około 180 tys. Mg (ton). Poprzez swoją wielostronność i wielowymiarowość odnawialne źródła energii mogą znacząco przyczynić się zarówno do rozwoju polityki regionalnej kraju, wpływając bezpośrednio na zwiększenie poziomu bezpieczeństwa energetycznego, jak również dotrzymanie wprowadzonych przez Unię Europejską (UE) limitów emisyjnych, dotyczących m.in. wytwarzania gazów cieplarnianych. W ratyfikowanym przez Polskę protokole z Kioto z 1997 r., kraje UE zobowiązały się zredukować do roku 2012 emisję gazów cieplarnianych o 8 %. W artykule podjęto problematykę dotyczącą zarówno potencjału energetycznego biogazu, instalacji służących do ujmowania biogazu oraz jego zagospodarowania, jak również dokonano przeglądu aktów prawnych dotyczących wykorzystania biogazu powstającego na składowiskach odpadów.
Źródło:
Ecological Chemistry and Engineering. A; 2011, 18, 7; 923-932
1898-6188
2084-4530
Pojawia się w:
Ecological Chemistry and Engineering. A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energetyka odnawialna - problem czy szansa dla Ukrainy?
Renewable energetic - the problem or the chance for the Ukraine?
Autorzy:
Kalinichenko, A.
Malynska, L.
Kalinichenko, W.
Sazonova, N.
Powiązania:
https://bibliotekanauki.pl/articles/126171.pdf
Data publikacji:
2014
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
odnawialne źródła energii
oszczędzanie energii
energetyka wiatrowa
energetyka wodna
energetyka geotermalna
energia biomasy
renewable energy
conservation of energy
power of wind
hydro energy
geothermal energy
biomass energy
Opis:
Stały wzrost cen paliw na Ukrainie uświadamia konieczność przejścia na energię ze źródeł odnawialnych. Niestety największym problemem jest brak jakiegokolwiek wsparcia projektów poprawy oszczędności energetycznej lub energetyki alternatywnej. Potencjał energii odnawialnej na Ukrainie istnieje praktycznie w każdym regionie. W środkowej części kraju są to odpady z rolnictwa, w części zachodniej i północnej - bioodpady przemysłu leśnego, na zachodzie i południu - źródła geotermalne, energia wiatrowa. Problemem jest brak wiedzy i zaufania wśród mieszkańców, a także brak odpowiednich fachowców z tej dziedziny. Doświadczenie Polski dotyczące wdrażania nowoczesnych projektów energetycznych ma dla Ukrainy duże znaczenie.
The continuous rise in prices on gasoline and gas serves as a basis for awareness of necessity to shift to the renewable energy sources. Almost each region of the Ukraine has the potential of renewable energy. At the central part this is an agricultural waste, on the west and north - biowaste of timber industry, on the west and south - geothermal sources, wind energy. Unfortunately the biggest problem is the absence of any state support of the energy saving projects and alternative energetic. The problem is also in the absence of knowledge and trust of people, and the lack of corresponding specialists in the given area. Polish experience in the implementation of modern energetic projects is of great importance for the Ukraine.
Źródło:
Proceedings of ECOpole; 2014, 8, 1; 181-188
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the Alternative Energy Sources in Heating and Air-Conditioning Installations
Wykorzystanie alternatywnych źródeł energii w instalacjach grzewczo-klimatyzacyjnych
Autorzy:
Cholewa, T.
Guz, Ł.
Siuta-Olcha, A.
Powiązania:
https://bibliotekanauki.pl/articles/388097.pdf
Data publikacji:
2010
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
alternatywne źródła energii
kolektory słoneczne
absorpcyjna pompa ciepła
sprężarkowa pompa ciepła
alternative energy sources
solar collectors
absorptive heat pump
air-compressor heat pump
Opis:
One of the most important problems of last years is the development of society, which is not compatible with environment protection. Total consumption of energy does not reflect already the degree of economic development. The index of scientifical and technical progress is nowadays the minimization of the energy consumption and its ecological cleanness. Additionally growing prices of energy carriers, the environmental degradation and climate changes make alternative energy sources interesting. Alternative energy sources can be used not only for room heating but also for its cooling. The connection these both functions by means of 4 different ideas of the heating and air-conditioning installation for the existing auditorium is presented. In the first idea main devices are solar collectors, air-compressor heat pump, the underground heat magazine filled with stones and a water, and ground probes. The second solution introduces the connection into one system of solar collectors, the air-compressor heat pump, the triple hydraulical coupling and ground probes. Into the third solution entered ground probes, solar collectors, absorptive heat pump and the gas boiler. The main elements of the fourth solution are compact heating and cooling devices and solar collectors, which work with warm water tank. The technological schema with well-chosen devices are presented and the special attention on advantages and disadvantages of each solutions is paid. Besides for solution III and IV capital costs, the annual conventional fuel consumption on needs of the heatings, emissions of pollutions to the atmosphere and savings resulting from the use of alternative sources energy were calculated.
Jednym z ważniejszych problemów ostatnich lat jest pogodzenie rozwoju cywilizacyjnego społeczeństwa ze środowiskiem naturalnym. Globalne zużycie energii nie odzwierciedla już dziś stopnia rozwoju gospodarczego, a wręcz odwrotnie. Wyznacznikiem postępu naukowo-technicznego danego kraju jest obecnie minimalizacja zużycia energii i jej ekologiczna czystość. Dodatkowo ciągle rosnące ceny nośników energii, degradacja środowiska naturalnego oraz zmiany globalne klimatu doprowadziły do wzrostu zainteresowania alternatywnymi źródłami energii. Alternatywne źródła energii można wykorzystywać zarówno do ogrzewania, jak i chłodzenia pomieszczeń. Połączenie tych obu funkcji zaprezentowano za pomocą 4 różnych koncepcji instalacji grzewczo-klimatyzacyjnych dla sali wykładowej. W pierwszej koncepcji głównymi urządzeniami są kolektory słoneczne, sprężarkowa pompa ciepła, podziemny magazyn ciepła wypełniony kamieniami i wodą oraz sondy gruntowe. Drugie rozwiązanie przedstawia połączenie w jeden układ kolektorów słonecznych, sprężarkowej pompy ciepła, trójdzielnego sprzęgła hydraulicznego oraz sond gruntowych. W skład trzeciego rozwiązania weszły sondy gruntowe, kolektory słoneczne, absorpcyjna pompa ciepła oraz kocioł gazowy. Natomiast głównymi elementami czwartego rozwiązania są kompaktowe urządzenia grzewczo-chłodzące, kolektory słoneczne współpracujące z biwalentnym podgrzewaczem wody. Zaprezentowano schematy technologiczne z dobranymi urządzeniami oraz zwrócono uwagę na wady i zalety poszczególnych rozwiązań. Ponadto dla rozwiązania III oraz IV obliczono koszty inwestycyjne, roczne zużycie paliwa konwencjonalnego, emisje zanieczyszczeń do atmosfery oraz oszczędności, które wynikają z wykorzystania odnawialnych źródeł energii.
Źródło:
Ecological Chemistry and Engineering. A; 2010, 17, 11; 1473-1481
1898-6188
2084-4530
Pojawia się w:
Ecological Chemistry and Engineering. A
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies