Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "plasma synthesis" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Anodic growth of copper oxide nanostructures in glow discharge
Autorzy:
Breus, A.
Abashin, S.
Lukashov, I.
Serdiuk, O.
Powiązania:
https://bibliotekanauki.pl/articles/2201134.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
nanotechnology
plasma synthesis
copper oxide nanostructure
glow discharge
nanotechnologia
synteza plazmowa
nanostruktura tlenku miedzi
wyładowanie jarzeniowe
Opis:
Purpose: Application of plasma glow discharge to copper oxide nanostructure growth is studied. The simplicity of the proposed technique may be beneficial for the development of new plasma reactors for large-scale production of diverse metal oxide nanostructures. Design/methodology/approach: Copper sample was placed on anode of a setup designed to ignite plasma glow discharge. The proposed approach allows eliminating the negative effects of ion bombardment, like sputtering and generation of defects on a surface of the growing nanostructures, but preserves the advantages of thermal growth. The growth process was explained in terms of thermal processes interaction occurring on a surface of the anode with the glow discharge plasma. Findings: Plasma treatment resulted in generation of reach and diverse nanostructures that was confirmed by SEM images. Nanowire-like, flower-like, anemone-like nanostructures and nanodisks composed into the nanoassemblies are observed; the nanostructures are associated with microbabbles on CuO layer. These findings allow concluding about the possible implementation of the proposed method in industry. Research limitations/implications: The main limitation is conditioned by the lack of heat supplied to the anode, and absence of independent control of the heat and ion fluxes; thus, the additional heater should be installed under the anode in order to expand the nomenclature of the nanospecies in the future studies. Practical implications: High-productivity plasma process in copper oxide nanostructures synthesis was confirmed in this research. It may be applied for field emitter and supercapacitor manufacturing. Originality/value: Oxide nanostructure synthesis is conducted by use of a simple and well-known glow discharge technique in order to expand the production yield and diversity of nanostructure obtained in the processes of thermal growth.
Źródło:
Archives of Materials Science and Engineering; 2022, 113, 3; 24--33
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Carbon nanostructure growth: new application of magnetron discharge
Autorzy:
Breus, A.
Abashin, S.
Serdiuk, O.
Powiązania:
https://bibliotekanauki.pl/articles/2055755.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
nanotechnology
plasma synthesis
carbon nanostructures
magnetron discharge
arc spots
nanotechnologia
synteza plazmowa
nanostruktury węglowe
rozpylanie magnetronowe
wyładowania
Opis:
Purpose: The application of a common magnetron discharge to the growth of carbon nanostructures is studied. The simplicity of the proposed technique can be beneficial for the development of new plasma reactors for large-scale production of carbon nanostructures. Design/methodology/approach: Graphite cathode was treated by carbon-containing powder accelerated by use of nozzle, and then aged in hydrogen. Superposition of glow and arc discharges was obtained, when putting the cathode under the negative biasing with respect to the walls of a vacuum chamber. The pulsed discharge was preserved through the whole time of treatment. This process was explained in terms of interaction of glow discharge plasma with a surface of the cathode made of non-melting material. Findings: The plasma treatment resulted in generation of the diverse nanostructures confirmed by SEM and TEM images. Spruce-like nanostructures and nanofibers are observed near the cathode edge where the plasma was less dense; a grass-like structure was grown in the area of “race-track”; net-like nanostructures are found among the nanofibers. These findings allow concluding about the possible implementation of the proposed method in industry. Research limitations/implications: The main limitation is conditioned by an explosive nature of nanostructure generation in arcs; thus, more elaborate design of the setup should be developed in order to collect the nanospecies in the following study. Practical implications: High-productivity plasma process of nanosynthesis was confirmed in this research. It can be used for possible manufacturing of field emitters, gas sensors, and supercapacitors. Originality/value: Synthesis of carbon nanostructures is conducted by use of a simple and well-known technique of magnetron sputtering deposition where a preliminary surface treatment is added to expand the production yield and diversity of the obtained nanostructures.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 109, 1; 17--25
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloy
Autorzy:
Posuvailo, V. M.
Kulyk, V. V.
Duriagina, Z. A.
Koval’chuck, I. V.
Student, M. M.
Vasyliv, B. D.
Powiązania:
https://bibliotekanauki.pl/articles/1818491.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
microstructure
hydrogen peroxide
porosity
plasma electrolyte synthesis
plasma electrolyte oxidation
mikrostruktura
nadtlenek wodoru
porowatość
Opis:
Purpose: Purpose of this work is to analyse the process of synthesis of oxide ceramic coatings in plasma electrolytes on 2024 aluminium alloy and to form an electrolyte which allows to reduce energy consumption for the coating formation. Design/methodology/approach: The oxide ceramic coatings were synthesized on 2024 aluminium alloy. The coatings were formed by the alternate application of anode and cathode pulses to the sample. X-ray diffraction analysis of coatings was performed on a DRON-3.0 X-ray diffractometer using CuKa radiation. The thickness of the coatings was determined using a CHY TG-05 thickness gauge. The porosity of the coatings was investigated by analysing the micrographs of the plasma electrolyte oxidation (PEO) coatings obtained on a scanning electron microscope at x500 magnification using the image processing technique. Findings: The electrolyte with 5 g/l H2O2 additive have been elaborated as an optimal composition for synthesis of a coating with an increased content of corundum (a-Al2O3) as compared to a coating synthesized in the same mode in the 3KOH+2Na2SiO3 electrolyte without H2O2. This synthesis mode allows obtaining a coating with a high corundum content at low energy consumption. Research limitations/implications: For further optimization of the synthesis modes, it is necessary to analyse the influence of the phase composition and porosity of the obtained oxide ceramic coatings on their microhardness, wear resistance, and corrosion resistance. Practical implications: Based on the developed modes of synthesis of the coatings, it will be possible to obtain wear and corrosion resistant oxide ceramic coatings with predetermined functional properties and to reduce energy consumption for their formation. Originality/value: Methods for accelerating the formation of coatings have been proposed and tested, in particular, by adding various amounts of hydrogen peroxide to the electrolyte. The content of oxides in the obtained coatings, in particular, their ratios at various concentrations of hydrogen peroxide in the electrolyte, were determined by X-ray phase analysis. The modes of synthesis of the coatings were developed which allow obtaining a continuous coating without cracks with simultaneous decreasing porosity from 4.32% to 3.55-3.53%.
Źródło:
Archives of Materials Science and Engineering; 2020, 105, 2; 49--55
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies