Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ogniwo słoneczne" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Pulsed laser deposition of ZnO and MoO3 as reflection prohibitors on photovoltaic cell substrate to enhance the efficiency
Autorzy:
Selvan, P.
Jebaraj, D. J. J.
Hynes, N. R. J.
Powiązania:
https://bibliotekanauki.pl/articles/2201045.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
solar cell
antireflection coating
refractive index
pulsed laser deposition
ogniwo słoneczne
powłoka antyrefleksyjna
współczynnik załamania światła
pulsacyjna ablacja laserowa
Opis:
Purpose With the ever-growing demand for conventional fuels, the improvement in the efficiency of the photovoltaic system is the need of the hour. Antireflection coatings enhance the availability of solar power by reducing the percentage of light reflected. A new coating has been developed to improve the solar cell's overall efficiency. This study focuses on enhancing the efficiency of the monocrystalline solar cell when a coating of ZnO-MoO3 is applied at a certain thickness. Design/methodology/approach A layer of ZnO followed by MoO3 is deposited on a Silicon solar cell substrate using a Pulsed Laser Deposition process. Due to the transmissivity d between the two materials, they act as excellent antireflection coating. The layer thickness has been engineered to lie in the maximum absorption spectrum of monocrystalline silicon solar cells, which is between 400 and 800 nanometers. Findings Based on the calculation of transmissivities for a given layer thickness of coating material, the coating has been done, and the efficiencies of the coated specimen were compared with the uncoated solar cell. The percentage improvement in the electrical efficiency of a single crystalline silicon solar cell with an anti-reflection coating at 1059 W/m2 is about 35.7%. Research limitations/implications Among the available antireflection coating materials, the combination that provides better efficiency when coated on top of a solar cell is hard to find. Practical implications This anti-reflection coating could be a better solution to enhance the overall efficiency of the single crystalline silicon solar cell. Originality/value Although ZnO and MoO3 coatings have been investigated separately for improvement in solar cell efficiency with varying levels of success, the hybrid coating of ZnO/MoO3 with a performance enhancement of 35.7% is a great leap.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 113, 2; 65--71
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of materials design in maintenance engineering in the context of industry 4.0 idea
Autorzy:
Dobrzański, L. A.
Powiązania:
https://bibliotekanauki.pl/articles/368329.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
maintenance
4.0 stage of economy
industry development
materials development
designing material conservation and manufacturing 3MD
selective laser sintering
implant-scaffold
laser texturization
multicrystalline silicon cells
cracking counteraction
austenitic steel
TWIP steels
TRIP steel
wear-resistant
CVD coatings
PVD coatings
cutting tool materials
Al alloy matrix nanocomposites
carbon nanotubes
graphene
dye synthesised solar cells
ALD coatings
dentistry
photovoltaics
konserwacja
przemysł 4.0
rozwój przemysłu
rozwój materiałów
selektywne spiekanie laserowe
rusztowanie implantowe
teksturyzacja
ogniwa krzemowe
pękanie stali
stal austenityczna
stal TWIP
stal TRIP
odporność na ścieranie
powłoki CVD
powłoki PVD
narzędzia skrawające
nanokompozyty
osnowa aluminiowa
nanorurki węglowe
grafen
ogniwo słoneczne
powłoki ALD
stomatologia
fotowoltaika
Opis:
Purpose: The paper presents the issues of designing the maintenance of materials and products in accordance with the idea of Industry 4.0. The author's views on the need for augmentation of the Industry 4.0 model were also presented, as well as the author's original concept that hybrid activities in predictive maintenance and condition-based maintenance should be preceded by designing material, maintenance & manufacturing 3MD at the stage of the product's material designing and technological designing. The 3MD approach significantly reduces the frequency of assumed actions, procedures and resources necessary to remain the condition of this product for the longest possible time, enabling it to perform the designed working functions. Examples of own advanced research on several selected, newly developed materials, used in very different areas of application, confirmed the validity of the scientific hypothesis and the relationship between the studied phenomena and structural effects and the working functions of products and their maintenance and indicated that material design is one of the most important elements guaranteeing progress production at the stage of Industry 4.0 of the industrial revolution. Design/methodology/approach: The author's considerations are based on an extensive literature study and the results of the author's previous study and empirical work. Each of the examples given required the use of a full set of research methods available to modern material engineering, including HRTEM high-resolution transmission electron microscopy. Findings: The most interesting intellectual achievements contained in the paper include presentations of the author's original concepts regarding the augmentation of the Industry 4.0 model, which has been distributed so far, which not only requires augmentation but is actually only one of the 4 elements of the technology platform of the extended holistic model of current industrial development, concerning cyber-IT production aided system. The author also presents his own concept for designing material, maintenance and manufacturing 3MD already at the stage of material and technological design of the product, eliminating many problems related to product maintenance, even before they are manufactured and put into exploitation. Detailed results of detailed structural researches of several selected avant-garde engineering materials and discussion of structural changes that accompanying their manufacturing and/or processing are also included. Originality/value: The originality of the paper is associated with the novelty of the approach to analysing maintenance problems of materials and products, taking into account the requirements of the contemporary stage of Industry 4.0 development. The value of the paper is mainly associated with the presentation of original issues referred to as findings, including the concept of augmentation of the Industry 4.0 model and the introduction and experimental confirmation of the idea by designing material, maintenance and manufacturing 3MD.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 96, 1; 12-49
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies