Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "microscope" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Thermal characterization of halloysite materials for porous ceramic preforms
Autorzy:
Kujawa, M.
Suwak, R.
Dobrzański, L.A.
Gerle, A.
Tomiczek, B.
Powiązania:
https://bibliotekanauki.pl/articles/2175810.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
halloysite
DTA/TG
XRD
high-temperature microscope
linear changes
haloizyt
mikroskop wysokotemperaturowy
zmiany liniowe
Opis:
Purpose: The aim of the study was to investigate the possibility of sintering raw (natural) halloysite and pure halloysite to produce porous ceramic preforms, and determination of sintering temperature based on the results of investigations into thermal effects, linear changes and phase transitions. Design/methodology/approach: Due to mullitisation ability of halloysite at high temperature, alternative applications based on the sintering technology (including the production of reinforcement of metal matrix composites) are being searched for. Pure halloysite and Dunino halloysite were selected for the study. Findings: Pure halloysite, characterized by low impurities, dimensional stability during sintering, softening temperature above 1500ºC and ability to transform into mullite at temperatures above 950ºC could be used as a base for the production of sintered, porous mullite preforms. Research limitations/implications: Presence of impurities in Dunino halloysite, contribute to the shift of the sintering temperature towards lower temperatures and caused a rapid and uncontrolled shrinkage of the sample and the appearance of the softening temperature at 1300ºC. Practical implications: Based on the research of thermal (DTA/TG, linear changes in high-temperature microscopy) and XRD studies it is possible to determine the sintering temperature of pure halloysite to manufacture the porous mullite preforms with open porosity. Originality/value: The received results show the possibility of obtaining the new mullite preforms based on pure halloysite.
Źródło:
Archives of Materials Science and Engineering; 2021, 107, 1; 5--15
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the surface geometry of the orthodontic archwire and their influence on the bacterial adhesion
Autorzy:
Ziębowicz, B.
Woźniak, A.
Ziębowicz, A.
Ziembińska-Buczyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/366963.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
archwires
b-Ti
AFM
atomic force microscope
SEM/EDS
confocal microscopy
pitting corrosion
łuk ortodontyczny
mikroskop sił atomowych
mikroskopia konfokalna
korozja wżerowa
Opis:
Purpose: The aim of this work is to characterize the surface geometry of the orthodontic archiwire and their influence of the pitting corrosion resistance and bacterial adhesion. Design/methodology/approach: In the paper, the results of the SEM/EDS analysis and microscopic observation of the samples surface and analysis of geometrical structure with the use Atomic Force Microscope (AFM) and Confocal Microscopy were presented as well as the pitting corrosion test and surface roughness and microhardness measurements were performed. Additionally the microbiological study after bacterial breeding with the use Scanning Electron Microscope was carried out. Findings: In the basis of the investigation, it can be concluded that the surface geometry of archwire has a significant impact on their pitting corrosion resistance in artificial saliva solution and on the bacterial adhesion. The obtained results show satisfactory properties and surface geometry of the tested orthodontic wires for use in the human oral environment. Research limitations/implications: In the future, it is planned to extend the research with physicochemical properties and the influence of oral hygiene products on the corrosive behaviour of the material. Limitations in the conducted tests refer to archwire design – a small diameter making measurements difficult. Practical implications: The oral environment is an extremely aggressive corrosive environment. The orthodontic elements should have very good corrosion resistance and biocompatibility. The focus should be on continuously improving orthodontic wires in terms of material quality and topography of its surface topography. Originality/value: The research is conducted in the field of biomedical engineering, which is part of material engineering and is used for the field of dentistry and microbiology.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 93, 1-2; 32-40
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical properties and microstructure of alkali activated mortar containing unexpanded clay
Autorzy:
Nasser, I.F.
Ali, M.A.
Kadhim, M.J.
Powiązania:
https://bibliotekanauki.pl/articles/2201132.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
alkali-activated mortar
pozzolan
unexpanded clay
flexural toughness
scanning electron microscope
thermal insulation
pucolana
glina nie spulchniona
wytrzymałość na zginanie
skaningowy mikroskop elektronowy
izolacja termiczna
Opis:
Purpose: In building constructions, due to the decrease of local raw materials and for sustainability purpose, beside the need of light pieces to be used in roofing and false ceiling; an alkali-activated mortar is the new development where pozzolanic material is used instead of cement and activated by an alkaline solution. Therefore, in this research, alkali-activated mortar containing unexpanded clay as a fine aggregate with a dry density of 1652 kg/m3, compressive strength of 3.2 MPa, and thermal conductivity of 0.4 (W/m.K) was produced ,also boards were performed in a dimension of 305×152×12 mm as to use them in false ceiling, and reinforced with 0.25 and 0.5% steel fibre to improve their toughness by 370.8% and 1146.1% compared with reference boards, which made them good choice to used them in roofing and secondary ceiling. Design/methodology/approach: For preparation of alkali-activated mortar, low calcium fly ash (FA) was used as a source binder material. In addition, super-plasticizer and unexpanded clay as a fine aggregate (produce from the crushed artificial aggregate) in the ratio of 1:2.75 fly ash/fine aggregate. The paste was prepared by mixing fly ash with an alkali silicate solution, in a solid-to-liquid ratio of 0.4. Alkali silicate activator was prepared by mixing the NaOH and Na2SiO3 solutions at the mass ratios of 2.5. The concentrations of the NaOH was the same molarity of (14M).To improve the mechanical properties of the reference mortar mixture ,steel fibre with 0.25 and 0.5% content were added to the mix .The specimens were tested for water absorption, dry density, compressive strength, flexural strengths, flexural toughness, and thermal conductivity, in addition to the Scanning Electron Microscope test (SEM) for all mortar mixes. Alkali-activated mortar boards with (305×152×12 mm) were prepared and tested for flexural strength and toughness. Findings: The results indicated that the modulus of rupture for mortar boards reinforced with 0.25 and 0.5% steel fibre exhibits an increase of (3.68-12.10)%. In comparison, the toughness is increased by about 370.8% and 1146.1%, respectively, as compared with the reference mortar (without fibre) which made them resistance to accident, in addition to use them in roofing due to their thermal insulation. Research limitations/implications: Further research is needed to make a similar board using another sustainable material. We can examine the thermal insulation that we can get from these board, especially in the building in Iraq which the weather faces high temperatures. Practical implications: There is a by-product that we could get from the electricity station in Iraq. We must study how we get rid of it. Originality/value: This paper investigate how to produce a new light board using artificial aggregate made from unexpanded clay, which has many benefits in building insulation roofing.
Źródło:
Archives of Materials Science and Engineering; 2022, 113, 2; 56--68
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The modern approach to manufacturing of carbon-rhenium nanocomposites
Autorzy:
Dobrzańska-Danikiewicz, A. D.
Wolany, W.
Powiązania:
https://bibliotekanauki.pl/articles/2201076.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rhenium
MWCNTs
multiwall carbon nanotubes
nanocomposites
high-temperature method
SEM
scanning electron microscope
TEM
transmission electron microscopy
ren
wielościenne nanorurki węglowe
nanokompozyt
skaningowa mikroskopia elektronowa
transmisyjna mikroskopia elektronowa
Opis:
Purpose The aim of the paper is to present the high-temperature method of producing MWCNTs-Re nanocomposites, the selection of satisfactory production conditions and the presentation of the results of microscopic and spectroscopic studies of nanocomposites produced by this method. Design/methodology/approach Two methods of manufacturing carbon-rhenium nanocomposites were tested: ineffective chemical synthesis and high-temperature reduction using H2, which was proven successful and allowed the production of nanocomposites with the expected properties. The received nanocomposites were investigated using Transmission Electron Microscope (TEM), and Scanning Electron Microscope (SEM), as well as were subjected to spectroscopic examination. Findings The article presents three steps of MWCNTs-Re nanocomposites fabrication using the high-temperature method, functionalization, impregnation and reduction. As part of own work, satisfactory conditions for producing those nanocomposites using a materials science and heuristic analysis were selected. Research limitations/implications The proposed high-temperature method allows to join rhenium nanoparticles with MWCNTs permanently. It is reasonable to test in the future whether the method is also effective for other carbon nanomaterials and/or nanoparticles of other metals. Practical implications MWCNTs-Re nanocomposites can be used as sensors of gases that are harmful to the environment. It was also confirmed that the MWCNTs-Re_4 nanocomposite has catalytic properties. Originality/value The paper presents a modern approach to the manufacturing of MWCNTs-Re nanocomposites, which assumes the use of a high-temperature furnace to heat the material in a hydrogen atmosphere.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 115, 2; 57--63
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies