Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "druk 3d" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Investigating the capability of low-cost FDM printers in producing microfluidic devices
Autorzy:
Haouari, K.B.
Ouardouz, M.
Powiązania:
https://bibliotekanauki.pl/articles/24200549.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
microfluidics
FDM
3D printing
additive manufacturing
mikroprzepływy
druk 3D
produkcja addytywna
Opis:
Purpose: This paper aims to investigate the possibilities of using 3D printing by fused deposition modelling (FDM) technology for developing micro-fluidic devices by printing a benchmark test part. A low-cost desktop printer is evaluated to compare the minimum possible diameter size, and accuracy in the microchannel body. Design/methodology/approach: The parts were designed using SolidWorks 2016 CAD software and printed using a low-cost desktop FDM printer and Polylactic acid (PLA) filament. Findings: Desktop 3D printers are capable of printing open microchannels with minimum dimensions of 300 μm width and 200 μm depth. Research limitations/implications: Future works should focus on developing new materials and optimizing the process parameters of the FDM technique and evaluating other 3D printing technologies and different printers. Originality/value: The paper shows the possibility of desktop 3D printers in printing microfluidic devices and provides a design of a benchmark part for testing and evaluating printing resolution and accuracy.
Źródło:
Archives of Materials Science and Engineering; 2022, 115, 1; 5--12
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of selected properties of PLA used in 3D printing
Autorzy:
Sośniak, K.
Biela, D.
Szalaty, D.
Ścieszka, M.
Polok-Rubiniec, M.
Włodarczyk-Fligier, A.
Kania, A.
Powiązania:
https://bibliotekanauki.pl/articles/24200651.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
materials
biomaterials
PLA
3D printing
FEM
materiały
biomateriały
druk 3D
MES
metoda elementów skończonych
Opis:
Purpose This study focuses on determining the best possible structure of the orthosis made with FDM 3D printing technology. To produce the samples, a thermoplastic PLA material was selected that met the conditions of biodegradability, biocompatibility and non-toxicity. The samples produced were subjected to a tensile strength test and corrosion resistance. Design/methodology/approach Studies based on FEM analysis were carried out using the advanced engineering software CAE - Inventor. The samples were designed in the CAD system, while the G-Code path was generated using the PrusaSlicer 2.5.0 program dedicated to the Prusa i3 MK3S+ printer, which was used to create the models. Surface morphology observations of PLA were carried out with a Zeiss SUPRA 35 scanning electron microscope (SEM). The static tensile test was performed on the Zwick/Roell z100 device based on the PN-EN ISO 527:1 standard. Electrochemical corrosion tests were carried out using the Autolab PGSTAT302N Multi BA potentiostat in Ringer solution at a temperature of 37ºC. Findings The research allowed the appropriate structure of the orthosis made of PLA polymer material using 3D FDM printing technology. The static tensile test, SEM and corrosion tests confirmed the correct application of this material for the selected purpose. It was possible to determine that samples with holes of 10 mm had the highest strength properties. Due to the tensile tests, the average tensile strength of those samples was around 61 MPa. The corrosion parameters of PLA were determined using Tafel analysis. Research limitations/implications The research methodology proposed in work can be used to study other biomedical materials. The results presented can be the basis for further tests in order to search for the best orthopaedic stabiliser. Originality/value The innovative part of the article are three different versions of structures intended for making orthoses used in medicine.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2023, 116, 2; 72--79
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design and testing 3D printed structures for bone replacements
Autorzy:
Ikonomov, P. G.
Yahamed, A.
Fleming, P. D.
Pekarovicova, A.
Powiązania:
https://bibliotekanauki.pl/articles/367249.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
3D printing
bone structure
3D modelling
testing
mechanical properties
druk 3D
struktura kości
modelowanie 3D
badania
właściwości mechaniczne
Opis:
Purpose: 3D printing has shown enormous potential for building plastic products, including bone, organs, and body parts. The technology has progressed from visualization and preoperation training to the 3D printing of customized body parts and implants. This research aims to create 3D printed bone structure from plastics and test the mechanical properties of the cortical and trabecular bone structures if they match the real bone structure strength. Design/methodology/approach: We used Digital Imaging, and Communications in Medicine (DICOM) images from Computer Tomography (CT) scans to created external bone structures. These images' resolution did not allow the creation of fine trabecular bone structures, so we used 3D modeling software to engineer special 3D void honeycomb structures (with triangular, square, and hexagonal shapes). Another reason to design void structures is that the 3D printing of complex shapes without support materials is problematic. After designing and 3D printing of the 3D bone structures, their mechanical properties need to be tested. Findings: 3D bone models, solid (cortical), and void (trabecular) bone structures were designed, 3D printed, and then tested. Tensile, bending, and compression testing was performed. Testing the mechanical properties of the honeycomb structures (triangular, square, and hexagonal) shows that their strength and modulus are higher than those of the real trabecular bones. The results show that 3D printed honeycomb structures mechanical properties can match and some cases exceeding the properties of the actual bones trabecular structures, while the sold structures have lower mechanical properties than the bone cortical structures. Research limitations/implications: During the 3D printing experiments, we found that 3D printers, in general, have low resolution, not enough to print fine trabecular bone structures. To solve the existing 3D printing technology's insufficient resolution, we later designed and built an SLA (stereolithography) 3D printer with high printing resolution (10 micrometers). Another limitation we found is the lack of biocompatible materials for 3D printing of bone structures. Future research work is in progress formulating superior ink/resin for bone structures 3D printing. Further, clinical trials need to be performed to investigate 3D printed parts’ influence on the healing of bone structures. Practical implications: We found that the 3D void (honeycomb) structures will have an impact not only on building bone structures but also in engineering special structures for industrial applications that can reduce the weight, time, and the cost of the material, while still keep sufficient mechanical properties. Originality/value: Designing and testing 3D printed bone models, solid (cortical), and void (trabecular) bone structures could replace bones. Design and test special void honeycomb structures as a replacement for cortical bone structures.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 101, 2; 76-85
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical analysis of mechanical properties of 3D printed aluminium components with variable core infill values
Autorzy:
Baras, P.
Sawicki, J.
Powiązania:
https://bibliotekanauki.pl/articles/1818813.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
additive manufacturing
metal 3d printing
numerical simulation
infill configurations
FEM
finite element method
wytwarzanie przyrostowe
druk 3D
symulacja numeryczna
MES
metoda elementów skończonych
Opis:
Purpose: The purpose of this paper is to present numerical modelling results for 3D-printed aluminium components with different variable core infill values. Information published in this paper will guide engineers when designing the components with core infill regions. Design/methodology/approach: During this study 3 different core types (Gyroid, Schwarz P and Schwarz D) and different combinations of their parameters were examined numerically, using FEM by means of the software ANSYS Workbench 2019 R2. Influence of core type as well as its parameters on 3D printed components strength was studied. The “best” core type with the “best” combination of parameters was chosen. Findings: Results obtained from the numerical static compression tests distinctly showed that component strength is highly influenced by the type infill choice selected. Specifically, infill parameters and the coefficient (force reaction/volumetric percentage solid material) were investigated. Resulting total reaction force and percentage of solid material in the component were compared to the fully solid reference model. Research limitations/implications: Based on the Finite Element Analysis carried out in this work, it was found that results highlighted the optimal infill condition defined as the lowest amount of material theoretically used, whilst assuring sufficient mechanical strength. The best results were obtained by Schwarz D core type samples. Practical implications: In the case of the aviation or automotive industry, very high strength of manufactured elements along with a simultaneous reduction of their wight is extremely important. As the viability of additively manufactured parts continues to increase, traditionally manufactured components are continually being replaced with 3D-printed components. The parts produced by additive manufacturing do not have the solid core, they are rather filled with specific geometrical patterns. The reason of such operation is to save the material and, in this way, also weight. Originality/value: The conducted numerical analysis allowed to determine the most favourable parameters for optimal core infill configurations for aluminium 3D printed parts, taking into account the lowest amount of material theoretically used, whilst assuring sufficient mechanical strength.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 103, 1; 16--24
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The digitisation for the immediate dental implantation of incisors with immediate individual prosthetic restoration
Autorzy:
Dobrzański, L. B.
Achtelik-Franczak, A.
Dobrzańska, J.
Dobrzański, L. A.
Powiązania:
https://bibliotekanauki.pl/articles/368724.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
surgical guide
immediate implant prosthetic restoration
individual abutments
dental implant
3D printing
CNC milling
computed tomography with cone beam
uzupełnienie protetyczne
łącznik
implant stomatologiczny
druk 3D
frezowanie CNC
stożkowa tomografia komputerowa
Opis:
Purpose: The purpose of this study is to present the author's method of planning the procedure of immediate implant-prosthetic restoration in place of a tooth qualified for removal by performing a surgical template and implant-prosthetic restoration based on data obtained in the CBCT test and intraoral scanning 3D model. Design/methodology/approach: The method of planning the implant surgery through the design and manufacture of surgical templates and implant prostheses performed before the start of medical procedures was described on the basis of actual clinical data from patients with anterior segment teeth qualified for extraction for reasons of complications after endodontic treatment. The placement of the implant was planned using virtual reality, where the bone model and the virtual soft tissue model were combined, which made it possible to perform a surgical template and prosthetic implant restoration. For the manufacturing, 3D printing as stereolithography SLA and selective laser sintering SLS for the surgical template manufacturing and CNC milling in the case of the prosthetic implant were used for restoration. Findings: The method allows planning the implant position based on two connected bone and soft tissue models and allows to design and manufacture a surgical guide. In this way, it becomes possible to place implants in the patient's bone during surgery procedure in the planned position and to install the prosthetic implant restoration in the form of an individual abutment and a PMMA crown during the same procedure in the surgical part. Practical implications: Thanks to the method of computer-aided design/manufacturing CAD/CAM production of surgical templates and prosthetic restoration based only on digital models and the planned position of the implant, it is possible to carry out the procedure of immediate tooth extraction and replacement with permanent prosthetic restoration. The whole process is based on the CBCT test performed at the beginning. The presented method allows shortening the procedure time by four times and the rehabilitation time by 3-6 months when performing the procedure in a minimally invasive manner. Originality/value: This article presents the original design and production method of surgical guides. It allows for precise planning of the implant position and transfer of this data to the patient's mouth during the procedure, enabling permanent prosthetic restoration before starting medical procedures.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 97, 2; 57-68
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of the adhesion between TPU and PLA in multi-material 3D printing
Autorzy:
Brancewicz-Steinmetz, E.
Valverde Vergara, R.
Buzalski, V. H.
Sawicki, J.
Powiązania:
https://bibliotekanauki.pl/articles/2201075.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
multi-material printing
PLA
TPU
FDM
adhesion
druk wielomateriałowy
drukowanie 3D
tworzywo PLA
termoplastyczny poliuretan
technologia FDM
adhezja
Opis:
Purpose In the Fused Filament Fabrication (FFF/FDM) technology, the multi-material manufacturing additive method is achieved by a single nozzle or multiple nozzles working simultaneously with different materials. However, the adhesion between different materials at the boundary interface in FDM multi-material printing is a limiting factor. These studies are concerned with improving and study the adhesion between two polymers. Design/methodology/approach Due to the numerous applications and possibilities of 3D printed objects, combining different materials has become a subject of interest. PLA is an alternative to the use of petrochemical-based polymers. Thermoplastic Polyurethane is a flexible material that can achieve different characteristics when combined with a rigid filament, such as PLA. To improve the adhesion between PLA and TPU in multi-material FFF/FDM, we propose the comparison of different processes: post-processing with acetone immersion, surface activation during printing with Acetone, surface activation during printing with tetrahydrofuran, post-processing annealing, and connection of printed parts with tetrahydrofuran. Findings Modifying the 3D printing process improved the quality of the adhesive bond between the two different polymers. Activation of the surface with THF is the treatment method recommended by the authors due to the low impact on the deformation/degradation of the object. Research limitations/implications In the study, adhesion was considered in relation to the circular pattern of surface development. Further analysis should include other surface development patterns and changes in printing parameters, e.g. process temperatures and layer application speed. Practical implications 3D printing with multi-materials, such as PLA biopolymer and thermoplastic polyurethane, allows for the creation of flexible connections. The strengthening of the biopolymer broadens the possibilities of using polylactide. Examples of applications include: automotive (elements, where flexible TPU absorbs vibrations and protects PLA from cracking), medicine (prostheses with flexible elements ensuring mobility in the joints). Originality/value Multi-material printing is a new trend in 3D printing research, and this research is aimed at promoting the use and expanding the possibilities of using PLA biopolymer.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 115, 2; 49--56
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies