Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ye-Ye" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
The effect of thermal treatment of the melt before crystallization on the structure and properties of castings
Autorzy:
Kondratyuk, S. Ye.
Veis, V. I.
Parkhomchuk, Z. V.
Powiązania:
https://bibliotekanauki.pl/articles/1818512.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
steel
aluminium alloy
isothermal treatment
crystallization
heredity of structure
mechanical properties
stal
stop aluminium
obróbka izotermiczna
krystalizacja
dziedziczność struktury
właściwości mechaniczne
Opis:
Purpose: The aim of the proposed research is to investigate the influence of temperature and duration of isothermal melt processing on structural characteristics of castings in connection with technological background of charge metal. Design/methodology/approach: Ferrous and non-ferrous alloys were obtained by remelting a charge with a dispersion-structured structure (which was ensured by high- speed crystallization). Remelting was carried out at different temperatures of overheating of the melt over the liquidus with different isothermal exposure at these temperatures. Experimental castings were crystallized under normal conditions. It was studied a change of structure formation and mechanical characteristics depending on the temperature and duration of thermal treatment of the melt before crystallization. Findings: It is established that isothermal treatment of the melt at the overheating of the liquid metal above a certain equilibrium temperature of the micro-inhomogeneous melt (Te) causes a gradual loss of hereditary characteristics of the original charge metal, increase of the chemical homogeneity of the melt and the formation of crystallization and formation a corresponding change in the mechanical properties of castings. Research limitations/implications: The results can be complemented by studies of the effect of thermal treatment in the temperature range of crystallization. Practical implications: The results can be used to select the optimal heat treatment during remelting and, accordingly, the mechanical properties of the resulting casting. Originality/value: The obtained results testify to the predominant influence of temperature on the dispersion of the cast structure of steels, given the duration of technological operations of preparation and casting of steels in the manufacture of castings in industrial conditions.
Źródło:
Archives of Materials Science and Engineering; 2020, 104, 1; 23--29
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structure formation and properties of overheated steel depending on thermokinetic parameters of crystallization
Autorzy:
Kondratyuk, S. Ye.
Veis, V. I.
Parkhomchuk, Z. V.
Powiązania:
https://bibliotekanauki.pl/articles/367984.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
steel
overheating
structure
crystallization
cooling rate
stal
przegrzewanie
struktura
krystalizacja
szybkość chłodzenia
Opis:
Purpose: The aim of the proposed research is to investigate the mutual influence of the temperature of an overheated melt and its cooling rate during crystallization on the formation of the cast structure and mechanical properties of structural steels. Design/methodology/approach: Two structural medium-carbon steels were melted in induction furnace and poured from temperatures 1520-1670°C into casting moulds with different heat removal ability. This ensured the crystallization and structure formation of the studied steel castings at cooling rates (Vc) of 5°C/sec (sand-clay mould), 45°C/sec (steel mould), 350°C/sec (water cooled copper mould). It was studied a change of structure formation, mechanical characteristics depending on the temperature-kinetic conditions of the processing of the melt. Based on the processing of the array of obtained experimental data using linear regression analysis and a software package, interpolation models and their graphic images obtained allow a quantitative assessment of the established patterns of structural characteristics and mechanical properties of the studied steels depending on melt temperature (T, °C) and its cooling rate (Vc, °C/sec) during crystallization and structure formation. Findings: Among the technological factors that determine the formation of the cast structure and the mechanical properties of steels, the dominant role is played by the intensity of heat removal during the solidification of castings. The high cooling rate of the melt during crystallization determines an increase in the number of crystallization nuclei due to an increase in the degree of supercooling of the melt, eliminates the negative effect of the high overheating temperature of the metal before casting. Research limitations/implications: In the future, the results can be complemented by studies of the influence of the duration of isothermal exposure of the melt at different temperatures of superheating and cooling conditions. Practical implications: The obtained mathematical models (regression equations) that determine the mutual influence of the cooling rate and the temperature of the melt overheating on the structure and mechanical properties of the studied steels make it possible to obtain steel castings with predetermined properties at the level of properties of wrought steel of similar chemical composition. Originality/value: Interpolation models that allow a quantitative assessment of the established patterns of structural characteristics and mechanical properties of the studied steels depending on the melt temperature (T, °C) and its cooling rate (Vc, °C/sec) during crystallization and structure formation are obtained.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 97, 2; 49-56
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Informative testing method of beer sewage samples for mini-breweries
Autorzy:
Pyrozhenko, Ye. V.
Sebko, V. V.
Zdorenko, V. G.
Zashchepkina, N. M.
Markina, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1818486.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
brewing technological process
sewage
informative methods
control
eddy current devices
proces technologiczny warzenia piwa
ścieki
metody informacyjne
kontrola
Opis:
Purpose: of the article is to investigate the theoretical rules of thermal transformer eddy current converter (TTC) during the preparation of ecological monitoring of brewery sewage samples based on the implementation of contactless two-parameter eddy current method of testing of the specific electrical conductivity λt and the temperature t of the beer sewage sample. It should be noted that this makes it possible to simultaneously prevent the causes of beer sewage samples deviation from the specified environmental safety indicators and to take adjustments. Design/methodology/approach: The theory of TTC operation concerning the electrical and temperature characteristics testing of beer sewage samples has been further developed by implement new universal transformation functions Δφt = f (Gt) and Δφ = f (xt), which relate the normalized difference components of the converter signals to physical and chemical characteristics of the sample. Due to this, it is possible to simultaneously prevent the causes of beer sewage samples deviation from the specified ecological safety indicators and to take appropriate adjustments. Findings: The method of two-parameter measuring test of the specific electrical conductivity λt and the temperature t of the beer sewage sample was developed on the basis of new universal transformation functions. Analysing the numerical data of electrical conductivity λ, TDS and pH at the initial temperature t1 = 15°C, the alkaline nature of beer sewage was determined. Research limitations/implications: The frequency range of the magnetic field f = 80-100 MHz, it is difficult to maintain in laboratory conditions, so the proposed method requires the use of modern high-frequency equipment, the radius of the probe depends on the radius of the primary converter frame. And therefore is quite a complicate to find appropriate tank. Practical implications: is to determine the nature of beer sewage based on the results of electrical and temperature parameters measurements during implementing a two-parameter eddy current method, which allows to prevent the reasons for beer sewage samples deviations from the specified environmental safety measures and to take appropriate adjustments. An important practical result is also the determination of the signal components and the normalized characteristics of the primary eddy current converter with a sample of beer sewage. They allow to calculate, design and create multi-parameter automated devices for measuring test of the physicochemical parameters of beer sewage samples. In turn, as a result of the physicochemical composition analysis of the sample, improving the accuracy of measurements of physicochemical parameters - there is an opportunity to improve and create advanced methods of wastewater purification on a weak electrolytic basis. Originality/value: The article originality is the investigation of the theoretical rules of thermal TTC by implementing a new multi-parameter eddy current method of measuring the specific electrical conductivity λt and the temperature t of the beer sewage sample based on the implementation of universal transformation functions Δφt = f (Gt) and Δφ = f (xt) that relate the converter signals to the physicochemical characteristics of the beer sewage sample, which helps to prevent the causes of the beer sewage samples deviation from the specified environmental safety indicators and take appropriate adjustments.
Źródło:
Archives of Materials Science and Engineering; 2020, 106, 1; 28--41
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Four-parameter electromagnetic method for determining the parameters of brewery effluents
Autorzy:
Sebko, V. V.
Pyrozhenko, Ye. V.
Zashchepkina, N. M.
Zdorenko, V. G.
Markina, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/2201046.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
four-parameter electromagnetic method
brewery effluents
magnetic flux probe
MFP
conversion function
joint measurement
electrical conductivity
relative permittivity
density
temperature
metoda elektromagnetyczna
ścieki
strumień magnetyczny
funkcja konwersji
przewodność elektryczna
względna przenikalność elektryczna
gęstość
temperatura
Opis:
Purpose of the article is to study a four-parameter electromagnetic method for joint measurements of electrical resistivity k, relative permittivity εr, temperature t and density ρ of samples of acidic, alkaline and average effluents from a microbrewery based on a magnetic flux probe (MFP), which considers the influence of informative parameters of beer effluents on the components of the amplitude and phase signals of a multiparameter device. Design/methodology/approach The implementation of the four-parameter method is carried out on the basis of the dependences G1 = f (A1) and G2 = f (A2) at two frequencies of the electromagnetic field f0 and f1 for acid, alkaline and average effluent and allows you to jointly determine the four parameters of effluent samples with the same converter in the same control area. The proposed method makes it possible to improve the accuracy of identifying effluent samples since the obtained multiparameter information makes it possible to determine the nature and properties of effluent samples using only one transducer with certain physical characteristics. The research results lead to the expansion of the technical capabilities of electromagnetic measurement methods, as well as to an increase in the metrological characteristics of electromagnetic transducers and an increase in the accuracy of measuring the parameters of effluent samples compared to reference methods and measuring instruments. Thus, the implementation of this approach contributes to the prediction and prevention of the reasons for the deviation of beer effluent samples from the specified indicators of environmental safety. Findings The universal conversion functions MFP have been established, connecting the amplitude and phase components of the converter signals with the parameters k, εr, t and ρ of acidic, alkaline and average effluents. Based on the universal transformation functions G1 = f (A1) and G2 = f (A2), a four-parameter electromagnetic method for joint measurements of electrical resistivity k, relative permittivity εr, temperature t and density ρ of acidic, alkaline, and average effluents from breweries has been developed. When conducting research at two close frequencies of the electromagnetic field f0 = 20.3 MHz and f1 = 22 MHz, algorithms were obtained for measuring and calculating procedures for determining k, εr, t and ρ for samples of acidic, alkaline and average effluents from the brewing industry. Research limitations/implications Research perspectives consist in the creation of automated systems for multiparameter measuring control of the physicochemical characteristics of acidic and alkaline effluent from food and processing industries based on the immersed electromagnetic transducer. Based on the data obtained using informative methods to measure the parameters of effluent samples, an integrated method for treating beer effluents of various compositions will be proposed. At the same time, the scheme of the integrated treatment method should include a filter that provides the introduction of a magnetic fluid and a separation device that allows us to remove a fraction, including pollution in itself. Practical implications Is that the proposed four-parameter electromagnetic method makes it possible to determine to what composition the controlled samples of wastewater should be attributed (acidic or alkaline). It, in turn, makes it possible to choose a rational method for treating beer effluents and to prevent the reasons for the deviation of effluent samples from the environmental safety indicators set by the standards. Originality/value of the article is the research related to the expansion of the functional and technical capabilities of the electromagnetic two-frequency transducer MFP through the implementation of a four-parameter electromagnetic method of joint measurements of electrical resistivity k, relative permittivity εr, temperature t and density ρ of acidic, alkaline and average effluents from breweries. The universal transformation functions G1 = f (A1) and G2 = f (A2) found in the work at two close magnetic field frequencies, f0 = 20.3 MHz and f1 = 22 MHz, make it possible to control four physicochemical parameters of acidic, alkaline and average wastewater at the same time by the same MFP. An algorithm has been developed for determining the signal components of a two-frequency thermal MFP, the ranges of which correspond to the ranges of changes in electrical resistivity k, relative permittivity εr, temperature t and density ρ of acidic, alkaline, and average brewery effluents. The basic relations that describe the two-frequency four-parameter electromagnetic method of joint measurements of the physicochemical parameters of acidic, alkaline and averaged beer effluents have been obtained.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 113, 2; 49--64
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies