Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bondarenko, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Developing measures to eliminate of hydrate formation in underground gas storages
Autorzy:
Volovetskyi, V. B.
Doroshenko, Ya. V.
Bugai, A. O.
Kogut, G. M.
Raiter, P. M.
Femiak, Y. M.
Bondarenko, R. V.
Powiązania:
https://bibliotekanauki.pl/articles/2172156.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
well
flowline
hydrate formation
local constraint
regulating choke
studnia
powstawanie hydratów
współczynnik ograniczenia
dławik
Opis:
Purpose The objective of this article is the analysys of methods for preventing and eliminating hydrates formations, classifying them and choosing the best ones for use in underground gas storage facilities. Comprehensive measures for the stable operation of gas storage facilities in the presence of conditions for the occurrence of hydrates formations were developed. Zones, being potentially prone to the hydrates formation during the gas storage facilities operation were identified. Design/methodology/approach The operational parameters of gas storage wells during gas withdrawal are analyzed. The identified wells were operated under difficult conditions due to the deposition of hydrates on the wellheads, in flowlines and process equipment of gas storage facilities. The places of the highest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. Hydrate-prone zones were identified by computational fluid dynamic (CFD) modeling at the location of regulating choke installations in underground gas storage facilities. Findings The zones of the greatest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. The analysis of the methods used in gas storage facilities of Ukraine to prevent and eliminate hydrates formation was out. A set of measures was proposed to prevent the hydrates formation in storage facilities to ensure their stable operation. Based on the Euler approach (Mixture model) by CFD modeling, zones prone to hydrates formation were determined at the installation site of regulating chokes in underground gas storages. The influence of the degree of fittings opening on the location of potential zones prone to hydrates formation was estimated. The gas-dynamic processes in the internal cavity of the gas pipeline at the installation site of the control fittings were studied and their influence on the distribution of bulk particles of the gaseous and liquid phases was established. Based on the studies performed, it was recommended to change periodically the mode of well operation for a certain time by opening or closing the regulating choke under favorable conditions for the formation of hydrates, especially at low ambient temperatures. Research limitations/implications The obtained results of experimental studies and calculations showed that in order to solve the problem of hydrates formation at gas storage facilities, it is advisable to use diverse measures through the introduction of modern intelligent systems for monitoring and controlling the technological process. Further refinement of the algorithm of the proposed monitoring and control system with its approbation in production was provided. Practical implications The results of the experimental studies and CFD modeling carried out allowed providing a more reasonable approach to the application of various available methods and measures to prevent hydrates formation in underground gas storage facilities. This approach made it possible to develop new effective ways and measures to prevent such complication. Originality/value Based on the conducted experimental studies and modeling, the major zones prone to hydrates formation in underground gas storages were determined. The developed measures will allow timely detection and prevention of hydrates formation at gas storage facilities are original.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 111, 2; 64--77
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chemical evaluation of the quality of nanostructures synthesized on the surface of indium phosphide
Autorzy:
Kovachov, S.S.
Bogdanov, I.T.
Pimenov, D.O.
Bondarenko, V.V.
Konovalenko, A.A.
Skurska, M.M.
Konovalenko, I.S.
Suchikova, Y.O.
Powiązania:
https://bibliotekanauki.pl/articles/2175768.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
semiconductors
nanostructures
chemical criterion
indium phosphide
quality indicators
półprzewodniki
nanostruktury
kryterium chemiczne
fosforek indu
wskaźniki jakości
Opis:
Purpose: The article proposes a methodology for determining the chemical quality criterion of porous layers synthesized on the surface of semiconductors, based on taking into account the chemical parameters of the surface that can affect the properties of nanostructures. Design/methodology/approach: The chemical quality criterion was evaluated in terms of stoichiometry, stability of structures over time, uniformity of distribution over the surface, and the presence of an oxide phase. As an example, a calculation is demonstrated for the por-InP/InP structure synthesized on a mono-InP surface. The results of calculating the chemical quality criterion were evaluated using the Harrington scale to rank samples by quality level. Findings: A chemical criterion for the quality of porous layers synthesized on the surface of semiconductors has been developed. This criterion contains a set of indicators sufficient for a comprehensive assessment of the surface condition and is universal in nature. The studies carried out make it possible to reasonably approach the determination of the modes of electrochemical processing of semiconductors and open up new perspectives in the construction of a model of self-organization of a porous structure. Research limitations/implications: The chemical quality criterion does not allow evaluating the obtained nanostructures in terms of geometric parameters. Therefore, in the future, there is a need to develop a morphological quality criterion and determine a methodology for assessing a generalized quality criterion for nanostructures synthesized on the surface of semiconductors, which may include economic, environmental, technological indicators, and the like. Practical implications: Study results are expedient from a practical point of view, since they make it possible to reasonably approach the determination of the modes of electrochemical processing of semiconductors, synthesize nanostructures with predetermined properties, and create standard samples of nanomaterial composition. Originality/value: Methodology for assessing the quality of porous semiconductors by a chemical criterion has been applied for the first time in engineering science. The article will be useful to engineers, who are engaged in the synthesis of nanostructures, researchers and scientists, as well as specialists in nanometrology.
Źródło:
Archives of Materials Science and Engineering; 2021, 110, 1; 18--26
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies