Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Arunamithra, J." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Enhanced algorithm for energy optimization and improvised synchronization in knee exoskeleton system
Autorzy:
Arunamithra, J.
Saravanan, R.
Venkatesh Babu, S.
Powiązania:
https://bibliotekanauki.pl/articles/24200592.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
knee exoskeleton
feature extraction
data classification
ANN algorithm
egzoszkielet kolana
ekstrakcja cech
klasyfikacja danych
algorytm ANN
Opis:
Purpose: The purpose of the study is to develop an augmented algorithm with optimised energy and improvised synchronisation to assist the knee exoskeleton design. This enhanced algorithm is used to estimate the accurate left and right movement signals from the brain and accordingly moves the lower-limb exoskeleton with the help of motors. Design/methodology/approach: An optimised deep learning algorithm is developed to differentiate the right and left leg movements from the acquired brain signals. The obtained test signals are then compared with the signals obtained from the conventional algorithm to find the accuracy of the algorithm. Findings: The obtained average accuracy rate of about 63% illustrates the improvised differentiation in identifying the right and left leg movement. Research limitations/implications: The future work involves the comparative study of the proposed algorithm with other classification technologies to extract more reliable results. A comparative analysis of the replaceable and rechargeable battery will be done in the future study to exhibit the effectiveness of the proposed model. Originality/value: This study involves the extended study of five frequency regions namely alpha, beta, gamma, delta and theta, to handle the real-time EEG signal processing exoskeleton, model.
Źródło:
Archives of Materials Science and Engineering; 2022, 117, 2; 79--85
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies