Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feature extraction" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Klasyfikacja stanów przedkrytycznych
Classification of pre-critical states
Autorzy:
Topczewska, M.
Frischmuth, K.
Powiązania:
https://bibliotekanauki.pl/articles/154431.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
klasyfikacja
ekstrakcja cech
classification
feature extraction
Opis:
Praca zawiera przykład klasyfikacji danych rzeczywistych opisujących sygnały niekrytyczne, przedkrytyczne i krytyczne. Celem jest rozpoznanie stanów niebezpiecznych tak wcześnie jak to możliwe. Ze względu na brak separowalności liniowej danych w celu separacji klas użyto klasyfikacji hierarchicznej z cięciami za pomocą klasyfikatorów liniowych oraz z podejściem one-versus-rest z wyróżnioną klasą sygnałów bezpiecznych. W wyniku ośmiu cięć uzyskano ostateczny podział przestrzeni skutkujący odseparowaniem klasy sygnałów bezpiecznych od podejrzanych, tj. przedkrytycznych i krytycznych oraz dający najmniejszą liczbę błędnie sklasyfikowanych obiektów z klasy sygnałów niekrytycznych.
The paper presents an application of classification methods to time-continuous signals (1). Signals with values that exceed a certain critical maximum are called dangerous or critical, otherwise we speak about normal or routine operation of the system under consideration, Fig. 1. The problem is to recognize pre-critical states, i.e. states preceding the actual dangerous ones, and that as early as possible. False negative classifications may have very serious consequences, while false positive verdicts cause expensive but unnecessary counter-measures. As pre-processing, the input signals are characterized by a number of features, which form sequences of vector data, indexed by the cycle number (2). In a first stage, suspicious feature vectors are selected, from which in a second sweep unlikely candidates are removed. The focus of the present paper is this second stage, i.e. the distinction between actual pre-critical and the harmless routine states among the suspicious states, indicated in the first stage by a certain preliminary test. The choice of features and the logic behind the preliminary test are beyond our present scope. Let it suffice to say that the first step is a combination of Principal Component Analysis and some statistical test, and that it is very effective but unspecific in the application at hand.For the real-world data we used to develop the method, it turned out that the obtained feature vectors were linearly non-separable. For that reason a hierarchical approach was applied, where in several steps linear cuts (4,5) of the one-versus-rest type were performed in order to single out the true pre-critical states. For the example under consideration, in eight iterations separation between pre-critical and non-pre-critical ones was achieved. We succeeded to keep the number of wrong negatives at zero while reducing the number of wrong positives to a fraction of the starting value, established by the preliminary test, Fig. 3, 4, 5. The final sensitivity, for the given data set, is 100%, and the achieved specificity is at 93.15%. Numerical experiments, using nonlinear classifiers on much larger data sets, are under way. The present aim is to find an optimal set of features and a one-step criterion which further improves the quality of the classification.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 10, 10; 872-875
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Human Detection in Thermal Images Using Low-level Features
Autorzy:
Budzan, S.
Powiązania:
https://bibliotekanauki.pl/articles/114333.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
human detection
infrared
feature extraction
HOG
Opis:
In this work the human detection method in infrared has been presented. The proposed solution focuses on the use low-level features and detecting parts of the human body. Low–level processing is based on modified HOG (Histogram of Oriented Gradients) algorithm. First, the only squared cells have been used, also calculation of the gradient has been improved. Next, the model of the head from the dataset IR (Infra Red) images has been created, also the model of the human body. Finally, the probability matrix has been examined using minimal distance classifier. The novelty of the proposed solution focuses on the combination of the pixel-gradient and body parts processing, also three stage classification process (head modelling, human modelling and classifier), which has been proposed to reduce the false detection. The experiments were performed on self-created IR images database, which contains images with most of the possible difficult situations such as overlapped people, different pose, small and high resolution of the people. The performance of the proposed algorithm was evaluated using Precision and Recall quality measure.
Źródło:
Measurement Automation Monitoring; 2015, 61, 6; 191-194
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vein Biometric Recognition Methods and Systems: A Review
Autorzy:
Al-Khafaji, Ruaa S.S.
Al-Tamimi, Mohammed S.H.
Powiązania:
https://bibliotekanauki.pl/articles/2022496.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
biometric technology
finger vein recognition
pre-processing
feature extraction
matching
Opis:
The Finger-vein recognition (FVR) method has received increasing attention in recent years. It is a new method of personal identification and biometric technology that identifies individuals using unique finger-vein patterns, which is the first reliable and suitable area to be recognized. It was discovered for the first time with a home imaging system; it is characterized by high accuracy and high processing speed. Also, the presence of patterns of veins inside one’s body makes it almost difficult to repeat and difficult to steal. Based on the increased focus on protecting privacy, that also produces vein biometrics safer alternatives without forgery, damage, or alteration over time. Fingerprint recognition is beneficial because it includes the use of low-cost, small devices which are difficult to counterfeit. This paper discusses preceding finger-vein recognition approaches systems with the methodologies taken from other researchers’ work about image acquisition, pretreatment, vein extraction, and matching. It is reviewing the latest algorithms; continues to critically review the strengths and weaknesses of these methods, and it states the modern results following a key comparative analysis of methods.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 1; 36-46
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature selection for EEG-based discrimination between imagination of left and right hand movements
Autorzy:
Binias, B.
Palus, H.
Powiązania:
https://bibliotekanauki.pl/articles/114144.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
EEG signal
brain-computer interfaces
feature extraction
classification
lateralized brain activity
Opis:
: In this article was analyzed an influence of selected features on the accuracy of discrimination between imagination of right and left hand movements based on recorded EEG waveforms. The study showed a significant advantage that individual selection of features and a classification algorithm for analyzed data holds over the more general approach. The results were compared with the results obtained by the participants of the "BCI competition IV" and placed in the top three.
Źródło:
Measurement Automation Monitoring; 2015, 61, 4; 94-97
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hardware acceleration of data classifiers for multimedia processing tasks
Sprzętowe przyspieszenie klasyfikacji danych multimedialnych
Autorzy:
Dziurzański, P.
Mąka, T.
Forczmański, P.
Powiązania:
https://bibliotekanauki.pl/articles/153826.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
feature extraction
multimedia data classification
Network on Chip (NoC)
ImpulseC
ekstrakcja cech
klasyfikacja danych multimedialnych
sieci wewnątrzukładowe
Opis:
In this paper, experimental results of a proposed hardware acceleration of feature extraction and data classifiers for multimedia are presented. This hardware is based on multi-core architecture connected with a mesh Network on Chip (NoC). The cores in the system execute both data classifiers and feature extraction for audio and image data. Using various meta heuristics the system is optimized with regards to different data communication criteria. The system was implemented on an FPGA platform with use of ImpulseC hardware description language.
W artykule zostały zeprezentowane wyniki eksperymentalne dotyczące sprzętowego przyspieszania ekstrakcji cech i klasyfikacji danych multimedialnych. Opracowane rozwiązanie sprzętowe bazuje na architekturze wielordzeniowej, w której każdy blok realizuje przypisaną mu statycznie funkcjonalność. Rdzenie połączone są ze sobą za pomocą sieci wewnątrzukładowej (ang. Network on Chip, NoC) o architekturze siatki. W artykule opisano pokrótce autorskie oprogramowanie służące do generowania kodu sieci wewnątrzukładowej. Graficzny interfejs użytkownika został zaprezentowany na rys. 1. Narzędzie ma za zadanie dokonywać odwzorowania wybranych funkcjonalności do poszczególnych rdzeni z wykorzystaniem takich meta-heurystyk jak algorytmy genetyczne, symulowane wyżarzanie, poszukiwanie losowe czy algorytmu gradientowego. Jako kryterium optymalizacji można wybrać minimalizację całkowitego przesyłu danych, minimalizację maksymalnej liczby danych transmitowanych przez pojedyncze łącze, a także minimalizację odchylenia standardowego rozmiaru strumieni transmitowanych przez poszczególne łącza. Przykładowe wyniki optymalizacji losowej dla sieci wewnątrzukładowej zostały przedstawione w tab. 1, natomiast wyniki optymalizacji dla sieci wewnątrzukładowej wykorzystującej inne podejścia - w tab. 2. Dla systemu zoptymalizowanego w ten sposób został wygnerowany opisujący go kod w języku ImpulseC, który następnie posłużył do syntezy sprzętowej na układzie FPGA z rodziny Xilinx Virtex 5. Zajętość układu XC5VSX50T dla trzech wykorzystanych klasyfikatorów została przedstawiona na rys. 3. Z kolei tab. 3 przedstawia liczbę zasobów wykorzystanych przez narzędzie syntezy wysokiego poziomu dla tych klasyfikatorów. Technika przedstawiona w publikacji umożliwia określenie warunków i ograniczeń implementacji sprzętowej systemu służącego klasyfikacji danych multimedialnych.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 6, 6; 382-384
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies