Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hidden Markov Models" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Selection of parameters of HMM
Dobór parametrów HMM
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/156099.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
przetwarzanie obrazów
ukryte modele Markowa
UMM
image processing
hidden Markov models
HMM
Opis:
Hidden Markov models are widely applied in data classification. They are used in many areas. The choice of parameters of HMM is very important because of efficiency of whole identification system. Individual parameters should be matched individually for each system in the experiment way.
Ukryte modele Markowa (ang. Hidden Markov Models - HMM) są szeroko stosowane do klasyfikacji danych w wielu dziedzinach, np. w biometryce do rozpoznawania twarzy lub głosu, rozpoznawania obrazów i dźwięku. Pozwala to na budowanie skutecznych systemów kontroli dostępu do zasobów oraz systemów identyfikacji/autoryzacji osób. Każde z tych zastosowań wymaga specyficznego podejścia do problemu i odpowiedniego zaprojektowania HMM. Dobór Parametrów HMM jest bardzo ważny ze względu za skuteczność systemu identyfikacji. Poszczególne parametry powinny być dobierane indywidualnie dla każdego systemu w sposób eksperymentalny, a badania powinny być przeprowadzone na reprezentatywnej liczbie wzorców. Najważniejszym problemem w projektowaniu systemów opartych o HMM jest wybór architektury modelu, czyli topologii oraz liczby stanów i obserwacji. Wpływ na te parametry ma złożoność i zróżnicowanie danych- sygnałów wejściowych. W przypadku topologii do dyspozycji mamy modele ergodyczne lub left-right. Natomiast przy doborze liczby stanów i obserwacji uwzględniamy typ sygnału wejściowego. Im bardziej złożony i różnorodny, tym te wartości powinny być większe. Należy jednak pamiętać, że im więcej stanów i obserwacji wybierzemy, tym czas estymacji parametrów i czas testowania wydłuży się wykładniczo. Ponadto istnieje granica, powyżej której system nie będzie wykazywał większej skuteczności.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 10, 10; 844-846
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody niejawnych modeli Markowa w automatycznej detekcji wybranych wad wymowy
Application Hidden Markov Models to Automatic Detection of Speech Disorder
Autorzy:
Wielgat, R.
Zieliński, T.
Świętojański, P.
Żołądź, P.
Woźniak, T.
Grabias, S.
Król, D.
Powiązania:
https://bibliotekanauki.pl/articles/152366.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
współczynniki HFCC
współczynniki MFCC
niejawne modele Markowa
terapia logopedyczna
human factor cepstral coefficients
Mel-frequency cepstral coefficients
hidden markov models
logopedic therapy
Opis:
W artykule przedstawiono wyniki badań dotyczących automatycznej detekcji wad wymowy u dzieci. Jako materiał badawczy zostały wykorzystane nagrania pochodzące od dzieci z wadami wymowy. Zadanie polegało na rozpoznaniu nieprawidłowo realizowanego fonemu w wybranych słowach testowych. Detekcja była dokonywana za pomocą metod rozpoznawania mowy, w których jako cec sygnału mowy użyto dwóch najbardziej obiecujących rodzajów cech: współczynnika MFCC praz współczynników HFCC. Jako klasyfikatora użyto metody niejawnych modeli Markowa (HMM), gdzie modelowanymi jednostkami fonetycznimi były zarówno fonemy jak i całe słowa. W badanych metodach dobrano ich parametry w celu zmaksymalizowania skuteczności rozpoznawania. W artykule zaprezentowano również analizę porównawczą wyników rozpoznawania otrzymanych z wykorzystaniem metody HMM oraz testowanej w poprzednich pracach metody nieliniowej transformacji czasowej (DTW).
The results of research on automatic detection of the pathological phoneme pronunciation are presented in the paper. Speech samples came from speech impaired children and persons who imitated pathological phoneme pronunciation. The recognition task was to find wrongly realized phoneme in the selected test utterances. At the reature extraction stage the most effective features` types have been used: standard Mel-Frequency Cepstral Coefficients (MFCC) and recently proposed Human Factor Cepstral Coefficients (HFCC). As a classificator hidden Markov models, with modeled speech unit being a phoneme as well as a whole word, have been used. The parameters of the HMMs were adjusted in order to achieve the best recognition accuracy. Comparision of the HMM and DTW methods is also presented in the paper.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 9 bis, 9 bis; 417-420
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies