Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "natural language processing" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Experimental Comparison of Pre-Trained Word Embedding Vectors of Word2Vec, Glove, FastText for Word Level Semantic Text Similarity Measurement in Turkish
Autorzy:
Tulu, Cagatay Neftali
Powiązania:
https://bibliotekanauki.pl/articles/2201815.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
semantic word similarity
word embeddings
NLP
Turkish NLP
natural language processing
Opis:
This study aims to evaluate experimentally the word vectors produced by three widely used embedding methods for the word-level semantic text similarity in Turkish. Three benchmark datasets SimTurk, AnlamVer, and RG65_Turkce are used in this study to evaluate the word embedding vectors produced by three different methods namely Word2Vec, Glove, and FastText. As a result of the comparative analysis, Turkish word vectors produced with Glove and FastText gained better correlation in the word level semantic similarity. It is also found that The Turkish word coverage of FastText is ahead of the other two methods because the limited number of Out of Vocabulary (OOV) words have been observed in the experiments conducted for FastText. Another observation is that FastText and Glove vectors showed great success in terms of Spearman correlation value in the SimTurk and AnlamVer datasets both of which are purely prepared and evaluated by local Turkish individuals. This is another indicator showing that these aforementioned datasets are better representing the Turkish language in terms of morphology and inflections.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 4; 147--156
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ontology Extraction from Software Requirements Using Named-Entity Recognition
Autorzy:
Kocerka, Jerzy
Krześlak, Michał
Gałuszka, Adam
Powiązania:
https://bibliotekanauki.pl/articles/2201736.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
engineering requirements
ontology extraction
named-entity recognition
classification and terminology
terminology
natural language processing
NLP
Opis:
With the software playing a key role in most of the modern, complex systems it is extremely important to create and keep the software requirements precise and non-ambiguous. One of the key elements to achieve such a goal is to define the terms used in a requirement in a precise way. The aim of this study is to verify if the commercially available tools for natural language processing (NLP) can be used to create an automated process to identify whether the term used in a requirement is linked with a proper definition. We found out, that with a relatively small effort it is possible to create a model that detects the domain specific terms in the software requirements with a precision of 87 %. Using such model it is possible to determine if the term is followed by a link to a definition.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 207--212
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies