Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fractional Order PID controller" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Fractional order based computed torque control of 2-link robotic arm
Autorzy:
Anwaar, Haris
Yixin, Yin
Ijaz, Salman
Ashraf, Muhammad Ammar
Anwaar, Waqas
Powiązania:
https://bibliotekanauki.pl/articles/103321.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
fractional order PID controller
computed torque controller
2-link robotic arm
Nelder-Mead optimization
regulator PID
regulator momentu obrotowego
2-linkowe ramię robota
optymalizacja Neldera-Meada
Opis:
The paper proposes the application of fractional order controller in position tracking control of 2-link nonlinear robotic arm. The nonlinear system dynamics is linearized using inverse dynamics of the model and fractional order PID controller is designed to deal with remaining tracking errors. The optimal values of controller pa-rameters are calculated using Nelder-Mead optimization technique based on desired design criteria. The objective function is designed using weighted sum approach on each performance specification based on transient domain parameters. It can be seen from simulation results that fractional order controller together with computed torque controller improved tracking performance of proposed system as compared to PID controller used in the outer loop. Moreover, the robustness of proposed scheme is checked by applying the disturbance signal at control input channels of 2-link nonlinear robotic arm links.
Źródło:
Advances in Science and Technology. Research Journal; 2018, 12, 1; 273-284
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilisation of inertial processes with time delay using a fractional order PI controller
Stabilizacja układów inercyjnych z opóźnieniem za pomocą regulatora PI ułamkowego rzędu
Autorzy:
Ruszewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/157228.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
regulator PID
układ ułamkowego rzędu
stabilność
opóźnienie
metoda podziału D
PID controllers
fractional system
stability
delay
D-partition method
Opis:
The paper presents the stability problem of control systems composed of a fractional-order PI controller and an inertial plant of a fractional order with time delay. A simple and efficient computational method for determining stability regions in the controller and plant parameters space for specified gain and phase margins requirements is given. If these regions are known tuning process of the fractional-order PI controller can be made. The method proposed is based on the classical D-partition method.
W pracy rozpatrzono problem stabilności układów regulacji automatycznej złożonych z regulatora PI ułamkowego rzędu oraz obiektu inercyjnego ułamkowego rzędu z opóźnieniem. Rozpatrywany układ regulacji automatycznej jest stabilny, gdy jego quasi-wielomian charakterystyczny ułamkowego stopnia (3) jest stabilny. tzn. wszystkie jego zera mają ujemne części rzeczywiste. Wykorzystując klasyczną metodę podziału D podano prostą analityczno-komputerową metodę wyznaczania obszarów stabilności na płaszczyźnie parametrów modelu obiektu regulacji (1) i regulatora (2). Wyznaczono analityczne zależności określające granice obszarów stabilności w przestrzeni parametrów (X, Y), gdzie X = Kkp, Y = Kkihλ. Obszar stabilności leży pomiędzy granicą zer rzeczywistych Y = 0 i granicą zer zespolonych o opisie parametrycznym (10), (11). Otrzymane opisy granic stabilności umożliwiają także wyznaczenie obszarów stabilności dla zadanego zapasu modułu A i fazy ∅. Przy wyznaczaniu obszarów stabilności dla określonego zapasu modułu A należy przyjąć ∅ = 0, natomiast dla określonego zapasu fazy ∅ należy przyjąć A = 1. Na podstawie znajomości tych obszarów można w prosty sposób określić nastawy regulatora, dla których rozpatrywany układ regulacji charakteryzuje się określonymi zapasami stabilności. Przedstawiony przykład potwierdza rezultat otrzymany na podstawie metody podziału D, że punkt z wyznaczonego obszaru stabilności (rys. 3) zapewnia określone wartości zapasu fazy.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 2, 2; 160-162
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies