Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pilarska, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Radiometric calibration of airborne laser scanning data
Kalibracja radiometryczna danych z lotniczego skaningu laserowego
Autorzy:
Pilarska, M.
Powiązania:
https://bibliotekanauki.pl/articles/130682.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
airborne laser scanning
LiDAR
multispectral laser scanning
radiometric calibration
OPALS
lotniczy skaning laserowy
multispektralne skanowanie laserowe
kalibracja radiometryczna
Opis:
Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 1064 and 1550 nm) this makes the experiment more interesting. Radiometric calibration is a complex process, and a short theoretical background is therefore provided at the beginning of the article. The applied calibration procedure relies on areas with known reflectivity. The calibration regions should exhibit stable radiometric properties, therefore asphalt is used to calibrate each dataset and calculate a calibration constant for each flight block (wavelength) independently. Following this, the results of radiometric calibration, reflectance and backscattering coefficient, are presented and discussed in detail. Finally, the obtained reflectance values are compared with spectral characteristics. It could be shown that the reflectance values which result from radiometric calibration are similar to values presented on spectral characteristics.
Lotniczy skaning laserowy (ALS) jest szeroko wykorzystywaną technologią w pomiarach fotogrametrycznych. Na podstawie dyskretnej rejestracji punktów tworzone są m.in. numeryczne modele terenu (NMT), numeryczne modele pokrycia terenu (NMPT), modele 3D miast. Większość skanerów rejestrujących z pułapu lotniczego pozyskuje dane w zakresie bliskiej podczerwieni. Jednak od pewnego czasu można spotkać się z pojęciem skaningu multispektralnego, który polega na rejestracji danych w więcej niż jednym zakresie spektralnym. Oprócz zakresu podczerwonego (λ=1064 nm), powszechne jest użycie skaningu batymetrycznego rejestrującego w zakresie zielonym oraz zakresie podczerwonym charakteryzującym się inną długością fali (λ=1500 nm). Aby móc korzystać z danych radiometrycznych, które dostarczane dzięki skaningowi multispektralnemu, niezbędne jest przeprowadzenie kalibracji radiometrycznej. Kalibracja radiometryczna jest kluczowym procesem przeprowadzanym podczas przetwarzania zobrazowań z pułapu satelitarnego w teledetekcji. Dzięki kalibracji niwelowany lub całkowicie wyeliminowany zostaje wpływ czynników zewnętrznych na otrzymane wartości radiometryczne. Mniej popularna, lecz również wskazana jest kalibracja radiometryczna w kontekście danych ze skaningu laserowego, kiedy to eliminowany zostaje wpływ m.in. zasięgu i kąta skanowania na rejestrowane wartości intensywności. Wynikiem kalibracji radiometrycznej są wartości współczynnika odbicia dla każdego echa, co wpływa na wzrost możliwości wykorzystania danych ze skaningu. W powyższym artykule zaprezentowane zostały wyniki kalibracji radiometrycznej danych ze skaningu lotniczego. Analizowane dane pochodziły z trzech różnych sensorów, a każdy z nich charakteryzował się inną częstotliwością lasera: 532 nm (lotniczy skaner batymetryczny), 1064 nm (skaner lotniczy) oraz 1550 nm (skaner zamontowany na bezzałogowym statku powietrznym UAV). Wyniki kalibracji zaprezentowane zostały w postaci rastrów oraz histogramów, a następnie omówione zostały różnice między wartościami odbicia w poszczególnych zakresach. W ostatnim rozdziale przeprowadzone zostało porównanie otrzymanych wartości współczynnika odbicia z krzywymi spektralnymi dla wybranych obiektów.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2016, 28; 79-90
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza dokładności modelowania 3D budynków w oparciu o dane z lotniczego skanowania laserowego
Analysis of 3D modelling accuracy based on point clouds from airborne laser scanning
Autorzy:
Pilarska, M.
Ostrowski, W.
Bakuła, K.
Powiązania:
https://bibliotekanauki.pl/articles/130360.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
modelowanie budynków
ALS
CityGML
LOD2
analiza dokładności
CAPAP
buildings modeling
CityGML LOD2
accuracy analysis
Opis:
Modelowanie budynków w dużej skali (miasto, kraj) jest trendem obserwowanym w wielu krajach. Modele budynków można tworzyć m.in. na podstawie danych z lotniczego skanowania laserowego oraz ze zdjęć lotniczych. Coraz więcej wagi przykłada się również do dokładności modeli 3D budynków. W artykule przedstawiona została analiza dokładności modeli budynków w oparciu o chmury punktów z lotniczego skanowania laserowego. Metodyka przedstawiona w artykule opiera się na wymaganiach odnośnie kontroli zaproponowanej w ramach projektu CAPAP. Wybrane zostały 3 obszary testowe, dla których dla każdej połaci dachów budynków obliczone zostały parametry statystyczne (odchylenie standardowe odległości punktów od płaszczyzny połaci, wartość średniej odległości między chmurą punktów a płaszczyzną dachu, błąd średni kwadratowy odległości - RMSE). Według przyjętego progu dokładności 1 m błędu RMSE dla obszaru 1: 1.04% połaci nie spełniło postawionego kryterium, dla obszaru 2: 0.63%, a dla obszaru 3: 12.63%. W drugiej części artykułu zaprezentowana została bardziej szczegółowa analiza modeli budynków. Dla połaci dachów wybranych modeli wygenerowane i poddane analizie zostały histogramy, które przedstawiają rozkład wartości różnic odległości normalnych punktów chmury od zamodelowanej płaszczyzny dachu. Metodyka analizy dachów modeli budynków na podstawie histogramów umożliwia nie tylko ocenę, czy dana płaszczyzna spełnia wymagania dokładności standardu LOD2, ale również, w jakim stopniu została ona poddana generalizacji.
Building modeling for big areas (city and country modeling) is becoming more popular. Building models are generated among all from airborne laser scanning data and aerial images. Additionally, more attention is devoted to analysis of the accuracy of the 3D building models, especially concerning the accuracy of roof planes segmentation and their vertical and horizontal accuracy. In the article analysis which based on the airborne laser scanning point clouds is presented. The methodology, which is described in this article, based on the accuracy analysis proposed within the CAPAP project, which is currently conducted in Poland. In this approach three test areas were chosen. For every roof surface statistical parameters were calculated, i.e. standard deviation of the normal distance between the roof surface and the point cloud, mean distance between the roof surface and the point cloud, and Root Mean Squared Error (RMSE). In order to assess the accuracy of chosen test areas, RMSE threshold equal 1 m was assumed. Additionally, according to in the analysis proposed within the CAPAP project, if 5% of the analyzed building models exceed the assumed accuracy by 20%, the model is not acceptable and should be corrected. For the areas, which were chosen in the article, one of them does not fulfill the assumed accuracy. Additionally, for the first test area, for 1.04% of the roof surfaces the RMSE value exceeds 1 m, for the second test area it was 0.63%, and for the third one: 12.63%. In the second part of the article more detailed analysis for selected buildings was conducted. For roof surfaces histograms, which present the distribution of the normal distances were generated and analyzed. The methodology of building models analysis which based on the histograms makes it possible not only to assess whether the building is generated properly and fulfills the CityGML requirements, but also to say if generalization has been conducted and how big impact does generalization have on the model. The automatic accuracy analysis of the building models can be very helpful in projects which cover big areas. The analysis may indicate buildings, which should be examined in detail. Additionally, accuracy analysis which based on histogram interpretation makes it possible to apply statistical tests in order to assess the if the values distribution is Gauss distribution and to examine whether the generalization during the building modeling was conducted.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2017, 29; 155-175
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the laser scanning solutions for the unmanned aerial vehicles
Porównanie koncepcji skanowania laserowego z bezzałogowych statków latających
Autorzy:
Ostrowski, W.
Górski, K.
Pilarska, M.
Salach, A.
Bakuła, K.
Powiązania:
https://bibliotekanauki.pl/articles/130527.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
unmanned aerial vehicle
UAV
point clouds
LiDAR
resolution
comparison
bezzałogowe statki latające
chmura punktów
rozdzielczość
porównanie
Opis:
This article provides description of new achievements in Unmanned Aerial Vehicles (UAVs) in the field of photogrammetry and remote sensing related to laser scanning technology. Platforms equipped with laser scanners are becoming a growing trend in UAV mapping. Two perspectives of development, which use laser sensors, as payload are described in this paper. The first solution is related to application of advanced LiDAR sensor, which collects data with simulated Beyond Visual Line Of Sight UAV (BVLOS UAV) platform from high altitude. The second development was less expensive UAV laser scanning system that acquires data from low-altitude Visual Line Of Sight (VLOS) platform. Additionally, state-of-art of LiDAR sensors, which can be mounted on UAVs, is presented, including categorization of ultralight laser scanners, legal restriction related to operating UAVs equipped with LiDAR system. In the experiment described in the article two datasets are introduced, one collected with Riegl VUX-1 UAV mounted on the first platform and the second with YellowScan Mapper that is a part of second UAV system. Captured datasets are evaluated concerning point density, spatial resolution, vegetation penetration and noise of laser beam assessment. The comparison indicates the differences between the platforms, what determines fields of their application. Therefore, conclusion related to the presented perspectives of development of UAV laser scanning can be drawn and possible future applications of both platforms are discussed.
Artykuł zawiera opis koncepcji rozwoju bezzałogowych statków latających (UAV) w dziedzinie fotogrametrii i teledetekcji związanych z technologią skanowania laserowego. Platformy wyposażone w skanery laserowe stają się coraz bardziej zauważalnym trendem w wykorzystaniu UAV w geodezji i kartografii. W niniejszym artykule opisano dwie perspektywy rozwoju tej branży, które wykorzystują sensory laserowe. Pierwsze rozwiązanie jest związane z zastosowaniem zaawansowanego skanera, który zbiera dane z symulowanej w doświadczeniu platformy poza zasięgiem wzroku (BVLOS UAV) z dużej wysokości. Drugą koncepcją rozwoju rynku jest pokazanie przykładu systemu skanowania laserowego UAV, który pozyskiwał dane z platformy w zasięgu wzroku (VLOS) na małej wysokości. Ponadto w artykule przedstawiono najnowocześniejsze skanery LiDAR, które mogą być montowane na UAV, w tym kategoryzację ultralekkich skanerów laserowych oraz prawne ograniczenia związane z eksploatacją UAV wyposażonych w system LiDAR. W opisanym eksperymencie w artykule analizowano dwa zestawy danych: jeden zebrano za pomocą UAV Riegl VUX-1 zamontowanego na platformie w postaci załogowego płatowca i drugiego za pomocą YellowScan Mappera, który jest częścią systemu UAV z platformą wielowirnikową. Przechwycone zestawy danych są oceniane pod względem gęstości punktów, rozdzielczości przestrzennej, możliwości penetracji roślinności i obserwowanego szumu wiązki laserowej. Porównanie wskazuje różnice między platformami, a tym samym koncepcjami i ich możliwymi zastosowaniami w perspektywie rozwoju skanowania laserowego UAV.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2017, 29; 101-123
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies