Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "lotniczego" wg kryterium: Wszystkie pola


Tytuł:
Stan obrazowania lotniczego i satelitarnego w świetle XX Kongresu MTFIT W Istambule – 2004 r.
Autorzy:
Kurczyński, Z.
Powiązania:
https://bibliotekanauki.pl/articles/130772.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
kongres
obrazowanie lotnicze
obrazowanie satelitarne
congress
aerial imagery
satellite imagery
Opis:
Referat prezentuje ocenę stanu obecnego i perspektywy rozwoju obrazowania lotniczego i satelitarnego, sformułowaną na podstawie przebiegu XX Kongresu Międzynarodowego Towarzystwa Fotogrametrii i Teledetekcji (MTFiT), który odbył się w lipcu 2004 r w Istambule. Ta problematyka jest w centrum zainteresowania I Komisji Technicznej MTFiT: „Systemy obrazowania, platformy i obrazy."
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2004, 14; 1-12
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczna detekcja zmian urbanistycznych na zdjęciach lotniczych
Automatic urban change detection in aerial images
Autorzy:
Jelonek, J.
Wyczałek, I.
Powiązania:
https://bibliotekanauki.pl/articles/131137.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
eksploracja zdjęcia lotniczego
detekcja zmian zabudowy
SIP
exploration of aerial image
building change detection
GIS
Opis:
Obrazy lotnicze lub satelitarne odgrywają coraz większą rolę podczas kontroli i aktualizacji baz danych miejskich systemów informacji. Podejmuje się próby wykorzystywania informacji bazodanowej jako inicjalnych danych uczących dla modułu rozpoznawania obiektów. Zestawienie rastrowego obrazu lotniczego z danymi wektorowymi pozwala zintegrować informację semantyczną dotyczącą określonych obiektów pokrycia terenu z odpowiednimi podobszarami obrazu rastrowego. Dzięki takiemu podejściu gromadzenie danych uczących jest w dużej mierze zautomatyzowane i tym samym znacznie przyspiesza stosowane procedury fotointerpretacyjne. Zaproponowana tu metodologia została zastosowana do analizy zmian zabudowy terenu. Ustalono, że monitorowanie powinno uwzględniać zarówno powstawanie nowych obiektów budowlanych jak i usuwanie starych. Procedura eksploracyjna ma charakter interaktywny, w którym system wskazuje operatorowi miejsca podejrzane o możliwość wystąpienia zmiany, zaś operator dokonuje ostatecznej weryfikacji wyboru i ręcznie wektoryzuje obiekty zakwalifikowane do zmiany. Do przetestowania przedstawionego tu podejścia, wykorzystano zdjęcie lotnicze obejmujące peryferia miasta Nekla wraz z przylegającym obszarem rolniczym. Opracowano algorytm obejmujący wczytanie wybranej informacji z bazy systemu Geo-Info, wygenerowanie modelu wektorowego dla aktualnego stanu zabudowy, przetworzenie ortofotomapy pod kątem wykrywania krawędzi oraz porównanie wyników z modelem wektorowym (algorytmy dylatacji i erozji). Efektem jest zbiór wskazań miejsc, gdzie mogło nastąpić wyburzenie budynku lub powstanie nowego. Omawiana procedura może działać w ramach programu Geo-Info, co znacznie ułatwia wybór obiektów do aktualizacji bazy.
In order to keep urban spatial databases up-to-date, it is necessary to inspect permanent changes to the environment and input new data into the system. Monitoring urban databases is increasingly conducted by analysis of aerial or satellite images. However, digital information can also be used as learning data for object recognition procedures. Comparison of raster aerial photographs with vector data makes it possible to integrate semantic information about the object’s land cover with corresponding sub areas of the image. Thanks to this, it is possible to automatize the collection of learning data, which greatly increases the speed of used interpretation procedures. The methodology described here was developed for building change detection. It was stated that monitoring should include the detection of both new and removed buildings. The procedure is interactive: the system shows places where new buildings may be in the image or where buildings existing in the database are not present, and the user can make a decision about the nature of the change and digitize a new object if necessary, and add any necessary descriptive information. The solution was implemented in the Polish Geo-Info spatial information system. The orthophotomap of the part of the city of Nekla with surrounding agricultural areas was used for building change detection, and the corresponding database information was used as well. The algorithm includes: - reading necessary information from the database to define places under existing buildings, - color image conversion into grayscale form, - use a Sobel operator to extract perpendicular edges, - image binarization using heuristically defined threshold values, - extraction of places differing from vector data, - indicating each place subsequently on the screen. The procedure works independently or within the Geo-Info system. The former approach uses imported vector data and has its own GUI, and the latter works as an internal procedure making it possible to update the existing database.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 249-257
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wizualizacja i przetwarzanie chmury punktów lotniczego skaningu laserowego
Visualization and processing of airborne laser scanning points cloud
Autorzy:
Twardowski, M.
Marmol, U.
Powiązania:
https://bibliotekanauki.pl/articles/130604.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotniczy skaning laserowy
wizualizacja
przetwarzanie danych
airborne laser scanning (ALS)
visualization
data processing
Opis:
Lotniczy skaning laserowy stwarza szerokie pole dla badań naukowych i prac badawczych nad rozwojem nowych algorytmów i metod analizy danych przestrzennych. Niestety większość istniejących oprogramowań do przetwarzania danych laserowych nie pozwala na modyfikację istniejących procedur, niekiedy wręcz działając na zasadzie „czarnej skrzynki”. Wejściowe dane laserowe ulegają bliżej nie określonym operacjom, przynosząc trudne do zweryfikowania wyniki, co zdecydowanie ogranicza wolność naukową w pracach badawczych. Dlatego w Katedrze Geoinformacji, Fotogrametrii i Teledetekcji Środowiska AGH narodziła się idea stworzenia własnego narzędzia, opartego na licencji OpenSource, które nie będzie obarczone żadnymi ograniczeniami. Były to główne przesłanki do powstania projektu LIDARView. Założeniem projektu jest otwarty dostęp do kodu źródłowego obiektów, co pozwoli na udoskonalanie zastosowanych algorytmów. Modularna budowa systemu umożliwi nieograniczone rozwijanie jego potencjału poprzez aktualizację i dodawanie nowych elementów do systemu. Projekt LIDARView jest obecnie w początkowej fazie rozwoju. Oprogramowanie umożliwia podstawowe operacje na chmurze punktów, takie jak: powiększanie, obracanie i przesuwanie danych laserowych. Zakładka Image pozwala na integrację danych laserowych z danymi obrazowymi. Umożliwia także wykorzystanie obserwacji stereoskopowej w procesie przetwarzania danych lidarowych poprzez możliwość edycji linii nieciągłości i form morfologicznych W zakładce Cloud zostały zaimplementowane algorytmy do klasyfikacji i filtracji chmury punktów. Na obecnym etapie rozwoju zostały zaprogramowane proste filtry usunięcia błędów grubych i rozrzedzenia chmury punktów. Została także wprowadzona procedura automatycznej klasyfikacji chmury danych laserowych na punkty terenowe i punkty pokrycia. Filtracja odbywa się z wykorzystaniem algorytmu częstotliwościowego (Marmol, 2010). Autorzy projektu mają nadzieję, że dzięki otwartej strukturze systemu, projekt LIDARView nie ulegnie stagnacji i będzie rozwijany także w innych ośrodkach badawczych.
Relatively new technology which is laser scanning provides wide area of scientific study and research on new algorithms and spatial analysis methods. Unfortunately most of existing software does not allow for modification of existing procedures, usually working on a “black box” principle, where laser input data are treated with unknown operations, yielding results which are hard to verify. It severely impedes scientific freedom while research is involved. That is why idea of creating own software was born, based on open source license, not encumbered with those restricttions. Those were main reasons for creating LIDARView project. It assumes open access to modules source code allowing for improvements of used algorithms and modular design allows for unrestricted research through additions of new elements. LIDARView project is currently in its starting phase. Software allows for basic point cloud operations such as: zooming, translation and rotation of laser data. Included image module allows for displaying photographs as background for a point cloud. Cloud module can be used for accessing classification and filter functions. Current development state includes: gross error removal, cloud thinning and point classification for topographic surface.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 457-465
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ADS40 - Progress in digital aerial data collection
ADS-40 - Postęp w pozyskiwaniu danych cyfrowych z pułapu lotniczego
Autorzy:
Fricker, P.
Schreiber, P.
Powiązania:
https://bibliotekanauki.pl/articles/129950.pdf
Data publikacji:
2001
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
dane cyfrowe
ADS40
samolotowy czujnik cyfrowy
digital data
Airborne Digital Sensor
Opis:
After its introduction at the ISPRS Congress in Amsterdam in 2000 the LH Systems ADS40 Airborne Digital Sensor has undergone extensive final tuning, flight tests and calibration, culminating in first deliveries to customers in summer 2001. Recent tests have included investigations into the geometric and radiometric performance of all seven channels - three panchromatic and four multispectral - using imagery acquired at several flying heights over various types of terrain in Switzerland, Japan and Italy.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2001, 11; P-29-P-30
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radiometric calibration of airborne laser scanning data
Kalibracja radiometryczna danych z lotniczego skaningu laserowego
Autorzy:
Pilarska, M.
Powiązania:
https://bibliotekanauki.pl/articles/130682.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
airborne laser scanning
LiDAR
multispectral laser scanning
radiometric calibration
OPALS
lotniczy skaning laserowy
multispektralne skanowanie laserowe
kalibracja radiometryczna
Opis:
Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 1064 and 1550 nm) this makes the experiment more interesting. Radiometric calibration is a complex process, and a short theoretical background is therefore provided at the beginning of the article. The applied calibration procedure relies on areas with known reflectivity. The calibration regions should exhibit stable radiometric properties, therefore asphalt is used to calibrate each dataset and calculate a calibration constant for each flight block (wavelength) independently. Following this, the results of radiometric calibration, reflectance and backscattering coefficient, are presented and discussed in detail. Finally, the obtained reflectance values are compared with spectral characteristics. It could be shown that the reflectance values which result from radiometric calibration are similar to values presented on spectral characteristics.
Lotniczy skaning laserowy (ALS) jest szeroko wykorzystywaną technologią w pomiarach fotogrametrycznych. Na podstawie dyskretnej rejestracji punktów tworzone są m.in. numeryczne modele terenu (NMT), numeryczne modele pokrycia terenu (NMPT), modele 3D miast. Większość skanerów rejestrujących z pułapu lotniczego pozyskuje dane w zakresie bliskiej podczerwieni. Jednak od pewnego czasu można spotkać się z pojęciem skaningu multispektralnego, który polega na rejestracji danych w więcej niż jednym zakresie spektralnym. Oprócz zakresu podczerwonego (λ=1064 nm), powszechne jest użycie skaningu batymetrycznego rejestrującego w zakresie zielonym oraz zakresie podczerwonym charakteryzującym się inną długością fali (λ=1500 nm). Aby móc korzystać z danych radiometrycznych, które dostarczane dzięki skaningowi multispektralnemu, niezbędne jest przeprowadzenie kalibracji radiometrycznej. Kalibracja radiometryczna jest kluczowym procesem przeprowadzanym podczas przetwarzania zobrazowań z pułapu satelitarnego w teledetekcji. Dzięki kalibracji niwelowany lub całkowicie wyeliminowany zostaje wpływ czynników zewnętrznych na otrzymane wartości radiometryczne. Mniej popularna, lecz również wskazana jest kalibracja radiometryczna w kontekście danych ze skaningu laserowego, kiedy to eliminowany zostaje wpływ m.in. zasięgu i kąta skanowania na rejestrowane wartości intensywności. Wynikiem kalibracji radiometrycznej są wartości współczynnika odbicia dla każdego echa, co wpływa na wzrost możliwości wykorzystania danych ze skaningu. W powyższym artykule zaprezentowane zostały wyniki kalibracji radiometrycznej danych ze skaningu lotniczego. Analizowane dane pochodziły z trzech różnych sensorów, a każdy z nich charakteryzował się inną częstotliwością lasera: 532 nm (lotniczy skaner batymetryczny), 1064 nm (skaner lotniczy) oraz 1550 nm (skaner zamontowany na bezzałogowym statku powietrznym UAV). Wyniki kalibracji zaprezentowane zostały w postaci rastrów oraz histogramów, a następnie omówione zostały różnice między wartościami odbicia w poszczególnych zakresach. W ostatnim rozdziale przeprowadzone zostało porównanie otrzymanych wartości współczynnika odbicia z krzywymi spektralnymi dla wybranych obiektów.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2016, 28; 79-90
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pozyskiwanie numerycznego modelu powierzchni topograficznej (NMPT) w oparciu o dane wysokościowe pochodzące z lotniczego skanera laserowego
Derivation of digital terrain model (DTM) from elevation laser scanner data
Autorzy:
Marmol, U.
Powiązania:
https://bibliotekanauki.pl/articles/130326.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
LIDAR
algorytm
NMPT
FFT
lidar
algorithm
DTM
Opis:
Lotniczy skaning laserowy (LIDAR – Light Detection And Ranging) jest nową, dynamicznie rozwijającą się metodą pozyskiwania informacji o powierzchni terenu. Pomiar laserowy dostarcza informacji w postaci trójwymiarowej „chmury punktów” nieregularnie próbkowanych, zarówno o powierzchni topograficznej jak również o innych strukturach badanego terenu (budynki, roślinność itp.). W wielu opracowaniach obszarem zainteresowań jest głównie powierzchnia topograficzna. Proces eliminacji punktów pokrycia terenu, zwany także filtracją stanowi jeden z głównych problemów przetwarzania danych laserowych. W ostatnich latach zostały opracowane algorytmy do automatycznej filtracji danych laserowych. Niestety, istniejące metody i oprogramowania posiadają jeszcze widoczne ograniczenia i nadal niezbędny jest znaczący, czasochłonny, interaktywny udział operatora. W niniejszym artykule przedstawiono analizę porównawczą pomiędzy algorytmem filtracyjnym opartym na FFT, badanym obecnie w Zakładzie Fotogrametrii i Informatyki Teledetekcyjnej AGH a filtracją metodą liniowej predykcji opracowaną w Instytucie Fotogrametrii i Teledetekcji Uniwersytetu Technicznego w Wiedniu. Głównym celem badań była kontrola wiarygodności i efektywności algorytmu opartego na FFT. Uzyskane wyniki badań udowodniły, że metoda ta w sposób właściwy eliminuje punkty pokrycia terenu z danych laserowych. Konieczna jest dalsza weryfikacja algorytmu dla różnych form ukształtowania i pokrycia powierzchni topograficznej.
Airborne laser altimetry (LIDAR – Light Detection and Ranging) is a relatively new method for the acquisition of information of terrain surface. A laser scanning system generates a 3-dimensional clouds of points with irregular spacing. The data consists of the mixture of terrain surface and non-surface points (buildings, vegetation). The separation of ground points from the other points located on top of buildings, vegetation or other objects above ground is one of the major problems. Algorithms and software used for the surface reconstruction have limitations that should be studied and overcome. Removing non – ground points from LIDAR data sets i.e. filtering is still a challenging task. The paper presents a comparative analysis of two filtering methods: FFT based algorithm (a new method investigated at the Department of Photogrammetry and Remote Sensing Informatics at the University of Science and Technology in Cracow) and linear prediction method developed at the Institute of Photogrammetry and Remote Sensing at the Vienna University of Technology . The main purpose of this analysis is to verify FFT based method. FFT based algorithm demonstrate promising results of the terrain surface reconstruction (DTM). However, further investigation is required to verify the reliability and accuracy of filtering algorithm on different types of terrain.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2003, 13b; 419-426
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Odwzorowanie wybranych obiektów krajobrazu w danych lotniczego skanowania laserowego
Representation of selected landscape objects in airborne laser scanning data
Autorzy:
Adamczyk, J.
Będkowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/130207.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotnicze skanowanie laserowe
środowisko
roślinność
odwzorowanie
airborne laser scanning (ALS)
natural environment
vegetation
representation
Opis:
Podczas budowy numerycznych modeli terenu (NMT) na podstawie danych lotniczego skanowania laserowego (chmur punktów) dąży sie do usunięcia punktów, które dotyczą odbić od obiektów znajdujących sie na powierzchni – budynków i budowli oraz roślinności. Istnieją jednakże dziedziny gospodarki oraz nauki, które są zainteresowane uzyskaniem danych, możliwie wiernie opisujących budowę pokrywy roślinnej. Dlatego też wydaje sie, że doskonalenie metodyki budowy numerycznego modelu pokrycia terenu wymaga bardziej wnikliwego podejścia, niż tylko ustalenie którędy przebiega górna granica (powierzchnia) opisująca kształt obiektu. Ze względu na przestrzenną zmienność pokrycia terenu, nie można przyjmować jednorodnych reguł przetwarzania danych dla całego obszaru, dla którego wykonano skanowanie laserowe. Istotnym jest dokonanie dokładnego rozpoznania przestrzennej dystrybucji różnych obiektów na badanym terenie oraz opracowanie charakterystyk opisujących sposób odwzorowania tych obiektów w danych skanowania laserowego. Informacje te pozwolą na zastosowanie zmiennych przestrzennie reguł przetwarzania chmur punktów skanowania laserowego – zarówno przy generowaniu NMT, jak i powierzchni opisujących budowę roślinności. W pracy przedstawiono wstępne wyniki badan nad przestrzenna dystrybucja chmury punktów skanowania laserowego różnych elementów krajobrazu, w dwóch fazach sezonu wegetacyjnego – wczesna wiosna oraz latem, z uwzględnieniem podziału rejestrowanych impulsów na pierwsze i ostanie echo. Dystrybucje przestrzenna chmur punktów pokazano w formie graficznej. Uzyskane wyniki skłaniają do podjęcia dyskusji nad niektórymi dotychczas wyrażanymi opiniami.
While constructing the DTM, it is necessary to filter out a large amount of information about the objects present on the terrain surface, representing typical land use and cover features – buildings and vegetation. The important economic and research branches need possibly detailed information regarding the structure of land cover. Hence, it becomes clear that currently developed methodology for construction of DSM needs a more analytical approach than the present one. The spatial variability of land cover causes that unified rules for the different landscape elements are useless. There should be an accurate analysis of spatial distribution of objects and also characteristics of their representation described in LIDAR data . Collecting such information will allow the spatial variable rules to be applied for processing of the LIDAR data clouds for both, DTM generation and for surfaces representing vertical structure of vegetation and other land cover objects. The paper presents results of the research on spatial distribution of the point clouds for different landscape objects, in two moments in a vegetation season. The first and last echoes were used. The results obtained suggest resorting to discussion about some opinions existing so far.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 1-9
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena dokładności danych lotniczego skaningu laserowego systemu SCALARS
The accuracy of airborne laser scanning data received from the SCALARS system
Autorzy:
Gołuch, P.
Borkowski, A.
Józków, G.
Powiązania:
https://bibliotekanauki.pl/articles/131048.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotniczy skaning laserowy
system ScaLARS
NMT
airborne laser scanning (ALS)
ScaLARS system
DTM
Opis:
Dokładność NMT interpolowanych na podstawie danych skanowania laserowego zależy w głównej mierze od dokładności danych źródłowych, jak równie_ od zastosowanej metody filtracji tych danych i metody interpolacji. Na dokładność źródłowych danych lotniczego skaningu laserowego wpływa wiele czynników, miedzy innymi stabilność nalotu fotogrametrycznego, jakość danych nawigacyjnych, dokładność kalibracji, terenowa wielkości śladu plamki promienia lasera (wysokości lotu i zbieżności wiązki), ukształtowanie terenu oraz pokrycie terenu. Wpływ poszczególnych czynników trudno jest rozdzielić i dlatego należy rozpatrywać ich ogólny wpływ na dokładność produktu końcowego. W pracy przedstawiono ocenę dokładności wysokościowej danych zarejestrowanych prototypowym skanerem ScaLARS. Skaning laserowy zrealizowano dla 20 kilometrowego odcinka doliny rzeki Widawy. Rejestracje sygnałów z INS i GPS przeprowadzono przy użyciu systemu Applanix POS/AV 510. Skanowanie zrealizowano z pokładu samolotu AN-2, z wysokości 550 m. Terenowa wielkość śladu plamki lasera wyniosła około 0.6 m. Badanie dokładności danych skaningu przeprowadzono w oparciu o punkty pozyskane z bezpośredniego pomiaru terenowego technikami GPS i tachimetryczna. Pomiary przeprowadzono na czterech reprezentatywnych obszarach obiektu badawczego (razem 10 obszarów testowych o zróżnicowanym pokryciu terenu). Uzyskano dokładności wysokościowe rzędu: a) tereny zalesione i zadrzewione – obszary o bardzo zróżnicowanym ukształtowaniu pionowym – 0.40 m, b) teren wzdłuż koryta rzeki, z wysoka trawa i zaroślami – 0.40 m, c) tereny użytkowane rolniczo (pola orne, łąki, pastwiska) – generalnie obszary płaskie - 0.25 m, d) drogi asfaltowe, brukowe i gruntowe – 0.20 m.
The accuracy of DTMs interpolated based on laser scanning data depends mainly on the accuracy of original data, filtering and interpolation method. There are many factors that influence the accuracy of original data, namely the stability of photogrammetric flight, quality of navigation data, accuracy of calibration, size of the footprint on the ground (flight height and beam convergence), landscape and land cover. It is difficult to separate the influence of each factor, therefore the total impact of all factors on the final product should be taken into consideration. In this work, the evaluation of height accuracy of data acquired by prototypical scanner ScaLARS was presented. Laser scanning was performed for 20-kilometer section of Widawa river valley. Registration of INS and GPS signals was carried out using Applanix POS/AV 510 system. Scanning was performed from airplane AN-2 at flight height 550 m. Terrain size of footprint was about 0.6 m. The study of scanning data accuracy was executed based on points obtained from direct terrain measurements using GPS and tachometry techniques. From the 20-kilometer section, four representative areas were selected. In those areas, there were ten testing fields of miscellaneous land cover. The height accuracy results obtained were as follows: a) forestry terrains – areas of considerable height differences – 0.40 m, b) terrain along river bed with high grass and bush – 0.40 m, c) agricultural terrain (arable fields, meadows, pastures) – mainly flat terrain – 0.25 m, d) tarmac, cobblestone and gravel roads – 0.20 m.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 251-260
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aproksymacja powierzchni terenu na podstawie danych lotniczego skaningu laserowego z wykorzystaniem modelu aktywnych powierzchni
Airborne laser scanning data-based approximation of terrain surface using the active surface model
Autorzy:
Borkowski, A.
Jóźków, G.
Powiązania:
https://bibliotekanauki.pl/articles/130806.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
płatki
NMT
TIN
GRID
interpolacja
flakes
DTM
grid
interpolation
Opis:
Model aktywnej powierzchni (flakes) otrzymuje się w wyniku rozwiązania zadania wariacyjnego, w którym minimalizowana jest energia całkowita powierzchni, Energia ta opisuje zarówno właściwości geometryczne modelowanej powierzchni jak i właściwości oraz strukturę danych pomiarowych. Model flakes wykorzystywano dotychczas w procesie filtracji danych skaningu laserowego. W niniejszej pracy model ten zastosowano zarówno do filtracji błędów grubych jak i do interpolacji numerycznego modelu terenu (NMT). Otrzymany NMT porównano z modelem otrzymanym w wyniku interpolacji z wykorzystaniem oprogramowania komercyjnego ImageStation. Wykorzystując model aktywnej powierzchni wyinterpolowano NMT na regularnej siatce (GRID) o boku 1 m. Zbiór punktów terenu powstały w wyniku filtracji posłużył do utworzenia, z wykorzystaniem ImageStation, modelu GRID z węzłami ściśle odpowiadającymi węzłom NMT. Modele zbudowano dla terenu rolniczo-leśnego o powierzchni około 1.5 km². W około 1.5*10⁶ węzłach siatki obliczono różnice wysokości pomiędzy obydwoma modelami. Średnia różnica wysokości pomiędzy modelami wynosi -0.05 m, a błąd średni różnic wysokości wynosi 0.34 m. Największe rozbieżności pomiędzy modelami zaobserwowano dla terenów leśnych. Dla pozostałych terenów różnice wysokości pomiędzy modelami są znikome. Przeprowadzony eksperyment numeryczny pokazał, że model flaks może być z powodzeniem zastosowany zarówno do filtracji danych skaningu laserowego jak i do interpolacji NMT na podstawie tych danych.
The active surface model (the flakes model) is determined by solving a variation problem in which the total energy of the surface is minimized: Etot = Eint + Eext → min. The internal energy, Eint describes geometrical properties of the modelled surface and is defined as the weighted sum of membrane kernel z²x + z²y and thin plate kernel z²xx + 2z²xy + z²yy : Eint = α/2 z²x + z²y + β/2 (z²xx + 2z²xy + z²yy). The weighting parameters α and β are chosen arbitrarily, the choice depending on implementation and geometrical properties (smoothness) of the modelled surface. The external energy Eint depends on the data. Depending on the implementation, the external energy may be described in different ways. So far, the active surface model has been used in research on filtration of airborne laser scanning data. The filtration is based on elimination of points (laser beam reflections) which do not belong to the terrain surface. The numerical tests performed confirmed the correctness of the method of airborne laser scanning data filtering presented. The filtration was correct in more than 90%. In this work, the active surface model was used both for filtering out gross errors and for interpolating the digital terrain model (DTM). The DTM obtained was compared to the DTM built with the commercial software ImageStation. In the active surface model application, a 1 m GRID DTM was interpolated. The filtering process produced a set of terrain points. The set was entered in the ImageStation to build a DTM of irregular TIN type. The software used allowed to transform this DTM to a regular GRID format. The GRID model was generated strictly in the same nodes to which the first DTM (interpolated using the active surface model) was interpolated. The models were developed for a rural-forested area of about 1.5 km². Differences between the DTMs built using the flakes model and the ImageStation were calculated for about of 1.5•10⁶ GRID nodes. The altitude differences ranged from -2.72 to 3.31 m. The mean difference between the models was -0.05 m, the RMS of the differences amounting to 0.34 m. The largest discrepancies between the DTMs were identified in the forested part of the area, particularly where there were few terrain points. In the rural part of the area, the altitude differences between the models were small.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 21-29
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie dyskretnej transformacji falkowej do filtracji danych lotniczego skaningu laserowego
Application of discrete wavelet transform to filtering airborne laser scanning data
Autorzy:
Borkowski, A.
Sośnica, K.
Powiązania:
https://bibliotekanauki.pl/articles/130970.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
dyskretna transformacja falkowa
lotniczy skaning laserowy
filtracja
ScaLARS
discrete wavelet transform
airborne laser scanning (ALS)
filtration
Opis:
Lotniczy skaning laserowy stanowi efektywne narzędzie do pozyskiwania informacji zarówno o fizycznej powierzchni ziemi, jak i elementach pokrycia terenu. Kluczowe zagadnienie w przetwarzaniu danych pochodzących ze skaningu laserowego stanowi filtracja, rozumiana jako eliminacja wszystkich punktów, nie należących do określonej powierzchni. Ze względu na duże zbiory danych skaningu laserowego poszukuje się szybkich algorytmów obliczeniowych, posiadających możliwości analizy danych w bardzo krótkim czasie. W artykule podjęto próbę opracowania uniwersalnej metody szybkiej filtracji danych lotniczego skaningu laserowego, opartej na analizie falkowej. W tym celu opracowano algorytm dwuetapowej filtracji, realizujący proces eliminacji punktów w dziedzinie częstotliwości. Filtrację oparto na założeniu, że wysokie częstotliwości sygnału, utożsamianego z profilami terenowymi, korespondują z obiektami na powierzchni terenu. Niskie częstotliwości odpowiadają natomiast za ogólny przebieg powierzchni gruntu. W pierwszym etapie filtracji opartej na filtrze dolnoprzepustowym dyskretnej transformacji falkowej, przeprowadzana jest identyfikacja wszystkich punktów znacznie odstających od powierzchni aproksymacji. Następuje redukcja wysokości punktów oraz budowa kolejnej powierzchni aproksymacji, nie zaburzonej wpływem obiektów terenowych. Aproksymacja terenu przybliża przebieg powierzchni gruntu, dzięki czemu algorytm działa zarówno w terenie płaskim, pochyłym, jak i pagórkowatym. Testy numeryczne opracowanego algorytmu zostały przeprowadzone na danych rzeczywistych. Wyniki filtracji danych na obiektach testowych są satysfakcjonujące. Skuteczność algorytmu oceniono na 95%, przy możliwości filtracji 1 miliona punktów w czasie 3.4 sekundy na komputerze przeciętnej klasy.
Airborne Laser Scanning (ALS) provides an effective tool for gaining data about physical terrain as well as features on the earth’s surface. The main problem in the process of analysing ALS data is filtration, i.e. the elimination of all recorded points which do not belong to the particular surface being considered. Because large datasets of points are being considered, appropriately fast algorithms are needed in order to process the data in a very short timespan. The objective of the research was to develop a universal method of fast filtration of the airborne laser scanning data based on wavelet analysis. The algorithm of two-steps filtration, which has been developed for this purpose, carries out the process of filtration in the domain of wavelet frequency. In this process, high frequencies of the signal, which can be thought as the terrain profiles, correspond to objects on the surface. Low frequencies are basically responsible for the surface of the ground. In the first step of the filtration process, based on a low pass filter of discrete wavelet transform, the identification of all points which lie away from the approximation surface, is made. Then a reduction in the height of the points is carried out as well as the construction of a final approximation surface, which is unbiased by the influence of artificial structures on the ground. This completes the filtration process. The algorithm works well both on a flat area as well as in hilly and mountainous terrain. The method has been tested on real data obtained by airborne laser scanning carried out in the “Widawa River Valley” campaign in 2005. The results of filtration are satisfactory. The accuracy of the algorithm was estimated at 95 %, with a capacity to filter 1 million points in 3.4 seconds
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2009, 20; 35-45
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Półautomatyczne modelowanie brył budynków na podstawie danych z lotniczego skaningu laserowego
Semi-automated building extraction from airborne laser scanning data
Autorzy:
Marjasiewicz, M.
Malej, T
Powiązania:
https://bibliotekanauki.pl/articles/131036.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lidar
3D model
CityGML
RANSAC
buildings
visualization
LiDAR
model 3D
budynki
wizualizacja 3D
Opis:
Tematem artykułu jest badanie możliwości półautomatycznego generowania brył budynków na podstawie chmury punktów pochodzącej z lotniczego skaningu laserowego. Zaproponowana metodyka oparta została o algorytm RANSAC zaimplementowanym w oprogramowaniu Cloud Compare. Algorytm umożliwia wykrywanie płaszczyzn w danych obarczonych szumem pomiarowym, dlatego dobrze sprawdza się w przypadku skaningu laserowego. W badaniach wykorzystano dane dostępne w państwowym zasobie geodezyjnym i kartograficznym – tj. chmury punktów z lotniczego skaningu laserowego pochodzące z projektu Informatycznego Systemu Osłony Kraju oraz przyziemia brył budynków z Bazy Danych Obiektów Topograficznych. Do przygotowania modeli wykorzystano pakiet oprogramowania ArcGIS oraz program SketchUP. Dokładność metody modelowania oceniono na dwóch polach testowych o różnych gęstościach chmury punktów. Zaproponowana metodyka umożliwiła stworzenie modeli charakteryzujących się dokładnością wyższą niż poziom LoD2 CityGML.
The main idea of this project is to introduce a conception of semi-automated method for building model extraction from Airborne Laser Scanning data. The presented method is based on the RANSAC algorithm, which provides automatic collection planes for roofs model creation. In the case of Airborne Laser Scanning, the algorithm can process point clouds influenced with noise and erroneous measurement (gross errors). The RANSAC algorithm is based on the iterative processing of a set of points in order to estimate the geometric model. Research of using algorithm for ALS data was performed in available Cloud Compare and SketchUP software. An important aspect in this research was algorithm parameters selection, which was made on the basis of characteristics of point cloud and scanned objects. Analysis showed that the accuracy of plane extraction with RANSAC algorithm does not exceed 20 centimeters for point clouds of density 4 pts./m2. RANSAC can be successfully used in buildings modelling based on ALS data. Roofs created by the presented method could be used in visualizations on a much better level than Level of Detail 2 by CityGML standard. If model is textured it can represent LoD3 standard.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2014, 26; 87-96
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena poprawności filtracji danych lotniczego skaningu laserowego metodą aktywnych powierzchni
Correctness evaluation of the flakes based filtering method of airborne laser scanning data
Autorzy:
Borkowski, A.
Józków, G.
Powiązania:
https://bibliotekanauki.pl/articles/130177.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotniczy skaning laserowy
filtracja
aktywne powierzchnie
zadanie wariacyjne
airborne laser scanning (ALS)
filtering
flakes
variational problem
Opis:
W procesie tworzenia numerycznego modelu terenu (NMT) z danych lotniczego skaningu laserowego istnieje konieczność wydzielenia z surowej chmury punktów tylko tych, które były odbiciami wiązki lasera od powierzchni terenu. Zadanie to realizowane jest w znacznym stopniu automatycznie z wykorzystaniem specjalistycznego oprogramowania służącego do klasyfikacji, bądź filtracji danych. W pracy przedstawiono algorytm filtracji bazujący na minimalizacji energii całkowitej powierzchni, która wyraża się suma energii wewnętrznej i zewnętrznej. Energia wewnętrzna opisuje geometryczne właściwości modelowanej powierzchni i dla modelu flakes jest ważona suma jej krzywizny i nachylenia. Energia zewnętrzna opisuje natomiast rozbieżność pomiędzy estymowana powierzchnia aktywna a danymi pomiarowymi i zależy od różnicy wysokości pomierzonej i aproksymowanej. W wyniku minimalizacji energii całkowitej, powierzchnia aktywna „dopasowuje” sie do powierzchni terenu. Występujące w prezentowanym modelu zadanie wariacyjne rozwiązane zostało metoda bezpośrednia, tzw. metoda Ritza. Testy numeryczne wykonano na rzeczywistych danych skaningu, do których dołączone były dane referencyjne w postaci prawidłowo sklasyfikowanych punktów terenu i obiektów. Dzięki temu możliwe było określenie poprawności filtracji prezentowanej metody. W wyniku porównania danych referencyjnych ze zbiorami punktów po filtracji określone zostały błędy procentowe filtracji. Uzyskane wyniki potwierdziły wysoka skuteczność prezentowanej metoda - poprawność filtracji porównywalna jest z innymi metodami i wynosi ponad 90%.
In the process of creating digital terrain model from airborne laser scanning data, there is a need (a necessity) to extract, from the raw points cloud, only those points which are the reflections of laser beam from the ground. This task is performed mainly automatically, using specialized software for data classification or filtering. In the present paper, and algorithm based on surface energy minimisation was presented. The total energy of surface, is the sum of an internal and external energy. Internal energy describes geometrical properties of modelled surface and, in the flakes model, it is a weighted sum of surface membrane kernel and surface thin plate kernel. External energy describes difference between estimated active surface and measured data and depends on the measured height and approximated height. As a result of total surface energy minimisation, active surface is “matched” with the terrain surface. The variation problem, which occurs in the task of surface energy minimisation, was solved using direct method (Ritz method). Numeric tests were carried out on the real scanning data that contained referenced data in the form of correctly classified ground and object points. Throughout referenced data, the evaluation of presented filtering method correctness could be estimated. As a result of comparison of the referenced data with the sets of points, after filtering the percentage values of filtering, errors were calculated. The results achieved confirmed that flakes method is effective – the filtering correctness value is similar to the values obtained using other methods, and amounts to above 90%.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 83-92
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa modelu budynku na podstawie danych z ewidencji gruntów i budynków oraz z lotniczego skaningu laserowego
Reconstructing building model based on integrating lidar data and cadastral maps
Autorzy:
Borowiec, N.
Powiązania:
https://bibliotekanauki.pl/articles/130000.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotniczy skaning laserowy
rzut budynku
model 3D
airborne laser scanner
building projection
Opis:
Automatyczna rekonstrukcja trójwymiarowych modeli budynków jest od kilku lat jednym z ważniejszych tematów badawczych na świecie. Obecnie zauważalny jest duży popyt na rekonstruowanie modeli miast 3D, a ich prezentacja i wizualizacja, jest nie tylko przydatna do przeprowadzania fachowych analiz przestrzennych (np. tworzenia map hałasu), ale jest również znakomitą promocją regionu lub miasta poprzez przedstawienie całemu światu interesujących i wartych odwiedzenia zabytków. Wśród światowych metod wykrywania, a następnie budowania modeli 3D budynków użytecznym jest aktywny system pomiarowy, jakim jest lotniczy skaning laserowy (ang. ALS – Airborne Laser Scanner). Jednak identyfikacja budynków tylko na podstawie „chmury punktów” jest zadaniem skomplikowanym i złożonym, dlatego identyfikując punkty warto podpierać się dodatkowymi informacjami pochodzącymi z innych źródeł. W niniejszych badaniach zostały wykorzystane mapy ewidencyjne, które to umożliwiły z całego zbioru punktów wybrać te punkty, które zostały odbite od dachów budynków. Wektory pozyskane z ewidencji uznano za krawędzie dachów budynków, które równocześnie zostały wykorzystane jako granice, w oparciu o które wycięto punkty reprezentujące dach. Połacie dachowe wykryto na podstawie danych lidarowych. Kształt dachu określono w sposób automatyczny wykorzystując w tym celu algorytm dziel - łącz, który to na chmurze punktów rozpościera siatkę przestrzenną złożoną z regularnych prostopadłościanów. Założeniem algorytmu jest przejście od szczegółu do ogółu, dzięki czemu możliwe jest wykrycie elementów dachu o wielkości, które odpowiadają rozmiarom zdefiniowanych na początku pracy algorytmu prostopadłościanom. Proces wyłonienia połaci dachowych przebiega iteracyjnie w oparciu o parametry opisujące płaszczyzny zbudowane na podstawie punktów. Obrysy podstawy budynków pozyskane z ewidencji podnoszone są na wysokość dachu. Model budynku pozyskany dzięki integracji danych wektorowych z ewidencji budynków oraz danych pochodzących z lotniczego skaningu laserowego osadzony jest na Numerycznym Modelu Terenu.
The automatic reconstruction of three-dimensional models of buildings has been for several years a major research project. Models of buildings are increasingly used for economic reasons in spatial planning. Among the global methods of detection, useful is the active measurement system ALS. However, building reconstruction based only on a cloud of points is complicated, therefore it is very useful to use additional information from other sources. In the present study were used cadastral maps, which allowed a whole set of points to choose only those which reflected from the roofs of buildings. Vectors from the ground plans were obtained as the edges of the roofs of buildings, which were also used as boundaries based on cut points that represented the roof. Roof surfaces were detected from the lidar data. The shape of a roof is automatically determined using the algorithm based on the split merge method. The aim of the algorithm is the transition from particular to general, so it is possible to detect the size of roof elements, which correspond to the size defined at the beginning voxels. The process of identifying roofs runs iteratively, based on the parameters describing the plane. Vectors are raised to the height of the building roof. Models of buildings were derived through integration of vector data from the ground plans, and data from airborne laser scanning is placed on digital terrain models. A terrain model was built of automatically filtered clouds of points.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2010, 21; 43-52
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie danych lotniczego skaningu laserowego jako osnowy geometrycznej dla korekcji obrazów QuickBird
Use of airborne laser scanning data as the geometric control for correcting QuickBird images
Autorzy:
Wolniewicz, W.
Zaremba, M.
Powiązania:
https://bibliotekanauki.pl/articles/131022.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria satelitarna
QuickBird
LIDAR
GPS
model korekcyjny
satellite photogrammetry
lidar
correction model
Opis:
W pracy przedstawiono analizy przydatności techniki LIDAR do ortorektyfikacji zobrazowań QuickBird bez wykorzystania terenowego pomiaru fotopunktów, dla obszaru miasta Ottawa w Kanadzie i terenów leśnych w Prowincji Alberta. Korekcję geometryczną obrazów QuickBird wykonano metodą wielomianową RPF z wykorzystaniem RPC i metody ścisłej. Przedstawiono właściwości modeli korekcyjnych. Do oceny dokładności generowania ortofotomapy wykorzystywano zarówno NMT jak i NMPT pochodzący z danych uzyskanych ze skaningu laserowego. Do ortorektyfikacji oraz oceny dokładności wykorzystano środowisko PCI Ortho Engine. Uzyskano błędy ortorektyfikacji i poziomie 2-3 pikseli dla obszaru miejskiego a na poziomie jednego piksela dla terenów leśnych. Przedmiotem badania był również wpływ liczby fotopunktów na dokładność procesu ortorektyfikacji. Dokładność powstałej ortofotomapy satelitarnej oceniono na podstawie pomiarów GPS. Otrzymane wyniki potwierdzają znaczenie danych pochodzących z wielu źródeł monitorowania powierzchni Ziemi, które coraz powszechniej są wykorzystywane wróżnorodnych zastosowaniach geoinformatycznych. Wykazano praktycznie, iż dane pochodzące ze skaningu laserowego mogą być dobrym źródłem osnowy fotogrametrycznej do korekcji wysokorozdzielczych zobrazowań satelitarnych.
This paper outlines the results of an analysis of the application of LIDAR technology for orthorectification of QuickBird images without using ground control points for the area of the city of Ottawa in Canada as well as for boreal forest areas in the province of Alberta. Geometrical adjustment of QuickBird images was executed using the RPF multinomial method with the use of RPC and the application of the co-linearity condition method. The effects of adjustment models are described in the paper. In order to evaluate the accuracy of the ortho-photo map generation process, both DCM and DSM obtained from laser scanning data were used. The PCI Ortho Engine environment was used as a tool for ortho-adjustment and the evaluation of accuracy. Errors obtained in the ortho-adjustment process were of the order of 2-3 pixels for municipal areas and 1 pixel for forest areas. The influence of a number of ground control points upon the accuracy of ortho-adjustment process was also investigated. The accuracy of the final satellite ortho-photo map was evaluated by applying GSP surveys. The obtained results show the importance of data coming from different Earth monitoring sources, which are used more and more extensively in a variety of different geometric applications. Since VHRR and LIDAR became operational there has been increasing consumer demand for both elevation models and images. As all data is digital from the beginning, data processing is done relatively quickly and is highly automated (mainly only quality control needs operator support), it was demonstrated in practice that the data from laser scanning may constitute an excellent source of photogrammetrical control for the adjustment of very high resolution satellite images. The spectrum of application for precise elevation data and orthophotomaps is much greater than shown here and includes such applications as power line mapping, precision forest management, and open-pit monitoring.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 567-575
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Projekt rewitalizacji Spały – opracowanie z wykorzystaniem cyfrowych ortofotomap oraz danych z lotniczego skanowania laserowego
Spała revitalization project – elaboration with using digital ortofotomaps and aiborne laser scanning data
Autorzy:
Szostak, M.
Kowalik, A.
Powiązania:
https://bibliotekanauki.pl/articles/130217.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ALS
analiza przestrzenna GIS
ortofotomapy lotnicze
rewitalizacja
spatial analysis GIS
airborne orthophotomaps
revitalization
Opis:
Niniejsze opracowanie to projekt koncepcyjny rewitalizacji miejscowości Spała, wykonany z wykorzystaniem ortofotomap lotniczych oraz danych z lotniczego skanowania laserowego. Obejmuje całą miejscowość na tle regionu, ze szczególnym uwzględnieniem otoczenia stawu na rzece Gać i fragmentu ulicy Józefa Piłsudskiego. Miejscowość dzięki projektowanym zmianom zyskuje atrakcyjność i nowoczesny wygląd, jednocześnie zachowując aspekt historyczny miejsca. Projektowi przyświeca kilka idei, najważniejsze z nich to: nawiązanie do pierwotnej wizji projektowej, promocja aktywnego stylu życia, brak ingerencji w naturę, zastosowanie ekologicznych materiałów i rozwiązań oraz łagodne przejście między granicą lasu a projektowaną zielenią. W opracowaniu wskazane zostają możliwości praktycznego zastosowania ortofotomap i danych z lotniczego skanowania laserowego w projektowaniu architektonicznym m.in. do przygotowania projektu rewitalizacji, analiz widoczności oraz wykonania wizualizacji przestrzennych.
The study is a conceptual design for the revitalization of fragments of Spała prepared with using airborne orthophotomaps and data from airborne laser scanning. From urban range perspective it covers the whole Spała, but especially pond on a Gać river surrounding, and part of Józef Piłsudski Street. Due to designed changes the area benefits from increased attractiveness and improved look, at the same time keeping its historical features. The project has been created having in mind following ideas: reference to the original design principle, promotion of an active, healthy lifestyle, avoiding interference with surrounding nature and using ecological materials and solutions. Moreover, there is a smooth transition between forest border and designed green. The paper suggests practical possibilities of using aerial orthophotos and data from airborne laser scanning in architectural design for example for the preparation of a revitalization project and selected views, cross-sections and visibility analyzes.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2017, 29; 125-136
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies