Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multi agent" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Fine tuning of agent-based evolutionary computing
Autorzy:
Mizera, Michal
Nowotarski, Pawel
Byrski, Aleksander
Kisiel-Dorohinicki, Marek
Powiązania:
https://bibliotekanauki.pl/articles/91820.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
multi-agent systems
metaheuristics
evolutionary computing
Opis:
Evolutionary Multi-agent System introduced by late Krzysztof Cetnarowicz and developed further at the AGH University of Science and Technology became a reliable optimization system, both proven experimentally and theoretically. This paper follows a work of Byrski further testing and analyzing the efficacy of this metaheuristic based on popular, high-dimensional benchmark functions. The contents of this paper will be useful for anybody willing to apply this computing algorithm to continuous and not only optimization.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 2; 81-97
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An approximate dynamic programming approach for semi-cooperative multi-agent resource management
Autorzy:
Boukhtouta, A.
Berger, J.
George, A.
Powell, W. B.
Powiązania:
https://bibliotekanauki.pl/articles/1396741.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
approximate dynamic programming
agent
semi-cooperative
multi-agent
resource management
Opis:
Complex problems involving multiple agents exhibit varying degrees of cooperation. The levels of cooperation might reflect both differences in information as well as differences in goals. In this research, we develop a general mathematical model for distributed, semicooperative planning and suggest a solution strategy which involves decomposing the system into subproblems, each of which is specified at a certain period in time and controlled by an agent. The agents communicate marginal values of resources to each other, possibly with distortion. We design experiments to demonstrate the benefits of communication between the agents and show that, with communication, the solution quality approaches that of the ideal situation where the entire problem is controlled by a single agent.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 3; 201-214
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi agent deep learning with cooperative communication
Autorzy:
Simões, David
Lau, Nuno
Reis, Luís Paulo
Powiązania:
https://bibliotekanauki.pl/articles/1837537.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
multi-agent systems
deep reinforcement learning
centralized learning
Opis:
We consider the problem of multi agents cooperating in a partially-observable environment. Agents must learn to coordinate and share relevant information to solve the tasks successfully. This article describes Asynchronous Advantage Actor-Critic with Communication (A3C2), an end-to-end differentiable approach where agents learn policies and communication protocols simultaneously. A3C2 uses a centralized learning, distributed execution paradigm, supports independent agents, dynamic team sizes, partiallyobservable environments, and noisy communications. We compare and show that A3C2 outperforms other state-of-the-art proposals in multiple environments.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 3; 189-207
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A continuous-time distributed algorithm for solving a class of decomposable nonconvex quadratic programming
Autorzy:
Zhao, Y.
Liu, Q.
Powiązania:
https://bibliotekanauki.pl/articles/91832.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
decomposable nonconvex quadratic programming
multi-agent network
consensus
Lyapunov method
Opis:
In this paper, a continuous-time distributed algorithm is presented to solve a class of decomposable quadratic programming problems. In the quadratic programming, even if the objective function is nonconvex, the algorithm can still perform well under an extra condition combining with the objective, constraint and coupling matrices. Inspired by recent advances in distributed optimization, the proposed continuous-time algorithm described by multi-agent network with consensus is designed and analyzed. In the network, each agent only accesses the local information of its own and from its neighbors, then all the agents in a connected network cooperatively find the optimal solution with consensus.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 4; 283-291
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A layered multiagent decision support system for crisis management
Autorzy:
Kebair, F.
Powiązania:
https://bibliotekanauki.pl/articles/91749.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
decision support systems
DSS
case of crisis
multi-agent
RoboCupRescue simulation system
Opis:
Decision Support Systems are powerful tools to help support making decisions. However, they are known to be customized for a specific purpose and can rarely be reused. Moreover, they do not support complex situations sufficiently. Our work addresses this challenge and consists in building a DSS that aims to help emergency managers to manage cases of crisis. The DSS is designed to be flexible and adaptive, so that it may be applied on different subjects of studies and whose behaviour may change with the change of its environment. We endowed it therefore with a multiagent layered core whose role is to represent dynamically and in real time the current situation, to characterize it and to compare it with past known scenarios. The final result of the DSS will help decision-makers to analyze the current crisis and its possible evolution. The RoboCupRescue simulation system is chosen as a test bed to illustrate and to test this approach.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 2; 125-132
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Agent - based dispatching enables autonomous groupage traffic
Autorzy:
Gath, M.
Edelkamp, S.
Herzog, O.
Powiązania:
https://bibliotekanauki.pl/articles/91721.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
groupage traffic
vehicle routing problem
VRP
multi-agent system
decision making
intelligent agent
multiagent simulation
Opis:
The complexity and dynamics in groupage traffic require flexible, efficient, and adaptive planning and control processes. The general problem of allocating orders to vehicles can be mapped into the Vehicle Routing Problem (VRP). However, in practical applications additional requirements complicate the dispatching processes and require a proactive and reactive system behavior. To enable automated dispatching processes, this article presents a multiagent system where the decision making is shifted to autonomous, interacting, intelligent agents. Beside the communication protocols and the agent architecture, the focus is on the individual decision making of the agents which meets the specific requirements in groupage traffic. To evaluate the approach we apply multiagent-based simulation and model several scenarios of real world infrastructures with orders provided by our industrial partner. Moreover, a case study is conducted which covers the autonomous groupage traffic in the current processes of our industrial parter. The results reveal that agent-based dispatching meets the sophisticated requirements of groupage traffic. Furthermore, the decision making supports the combination of pickup and delivery tours efficiently while satisfying logistic request priorities, time windows, and capacity constraints.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 1; 27-40
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handling realistic noise in multi-agent systems with self-supervised learning and curiosity
Autorzy:
Szemenyei, Marton
Reizinger, Patrik
Powiązania:
https://bibliotekanauki.pl/articles/2147129.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
deep reinforcement learning
multi-agent environment
autonomous driving
robot soccer
self-supervised learning
Opis:
Most reinforcement learning benchmarks – especially in multi-agent tasks – do not go beyond observations with simple noise; nonetheless, real scenarios induce more elaborate vision pipeline failures: false sightings, misclassifications or occlusion. In this work, we propose a lightweight, 2D environment for robot soccer and autonomous driving that can emulate the above discrepancies. Besides establishing a benchmark for accessible multiagent reinforcement learning research, our work addresses the challenges the simulator imposes. For handling realistic noise, we use self-supervised learning to enhance scene reconstruction and extend curiosity-driven learning to model longer horizons. Our extensive experiments show that the proposed methods achieve state-of-the-art performance, compared against actor-critic methods, ICM, and PPO.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 135--148
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear convergence algorithm: structural properties with doubly stochastic quadratic operators for multi-agent systems
Autorzy:
Abdulghafor, R.
Turaev, S.
Zeki, A.
Abubaker, A.
Powiązania:
https://bibliotekanauki.pl/articles/91876.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
doubly stochastic quadratic operators
nonlinear convergence algorithm
consensus problem
multi-agent systems
kwadratowe operatory podwójnie stochastyczne
problem konsensusu
systemy wieloagentowe
Opis:
This paper proposes nonlinear operator of extreme doubly stochastic quadratic operator (EDSQO) for convergence algorithm aimed at solving consensus problem (CP) of discrete-time for multi-agent systems (MAS) on n-dimensional simplex. The first part undertakes systematic review of consensus problems. Convergence was generated via extreme doubly stochastic quadratic operators (EDSQOs) in the other part. However, this work was able to formulate convergence algorithms from doubly stochastic matrices, majorization theory, graph theory and stochastic analysis. We develop two algorithms: 1) the nonlinear algorithm of extreme doubly stochastic quadratic operator (NLAEDSQO) to generate all the convergent EDSQOs and 2) the nonlinear convergence algorithm (NLCA) of EDSQOs to investigate the optimal consensus for MAS. Experimental evaluation on convergent of EDSQOs yielded an optimal consensus for MAS. Comparative analysis with the convergence of EDSQOs and DeGroot model were carried out. The comparison was based on the complexity of operators, number of iterations to converge and the time required for convergences. This research proposed algorithm on convergence which is faster than the DeGroot linear model.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 1; 49-61
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies