Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Neural Networks" wg kryterium: Temat


Tytuł:
The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks
Autorzy:
Chu, J. L.
Krzyżak, A.
Powiązania:
https://bibliotekanauki.pl/articles/91650.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neural networks
belief networks
convolutional neural networks
artificial neural networks
Deep Belief Network
generative model
Opis:
Biologically inspired artificial neural networks have been widely used for machine learning tasks such as object recognition. Deep architectures, such as the Convolutional Neural Network, and the Deep Belief Network have recently been implemented successfully for object recognition tasks. We conduct experiments to test the hypothesis that certain primarily generative models such as the Deep Belief Network should perform better on the occluded object recognition task than purely discriminative models such as Convolutional Neural Networks and Support Vector Machines. When the generative models are run in a partially discriminative manner, the data does not support the hypothesis. It is also found that the implementation of Gaussian visible units in a Deep Belief Network trained on occluded image data allows it to also learn to effectively classify non-occluded images.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 1; 5-19
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enhancing constructive neural network performance using functionally expanded input data
Autorzy:
Bertini, Jr., J. R.
Carmo Nicoletti, do, M.
Powiązania:
https://bibliotekanauki.pl/articles/91786.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
constructive neural networks
functional link artificial neural networks
functionally expanded input data
Opis:
Constructive learning algorithms are an efficient way to train feedforward neural networks. Some of their features, such as the automatic definition of the neural network (NN) architecture and its fast training, promote their high adaptive capacity, as well as allow for skipping the usual pre-training phase, known as model selection. However, such advantages usually come with the price of lower accuracy rates, when compared to those obtained with conventional NN learning approaches. This is, perhaps, the reason for conventional NN training algorithms being preferred over constructive NN (CoNN) algorithms. Aiming at enhancing CoNN accuracy performance and, as a result, making them a competitive choice for machine learning based applications, this paper proposes the use of functionally expanded input data. The investigation described in this paper considered six two-class CoNN algorithms, ten data domains and seven polynomial expansions. Results from experiments, followed by a comparative analysis, show that performance rates can be improved when CoNN algorithms learn from functionally expanded input data.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 2; 119-131
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Complex-valued associative memories with projection and iterative learning rules
Autorzy:
Isokawa, T.
Yamamoto, H.
Nishimura, H.
Yumoto, T.
Kamiura, N.
Matsui, N.
Powiązania:
https://bibliotekanauki.pl/articles/91682.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
complex-valued neural networks
associative memory
projection
Opis:
In this paper, we investigate the stability of patterns embedded as the associative memory distributed on the complex-valued Hopfield neural network, in which the neuron states are encoded by the phase values on a unit circle of complex plane. As learning schemes for embedding patterns onto the network, projection rule and iterative learning rule are formally expanded to the complex-valued case. The retrieval of patterns embedded by iterative learning rule is demonstrated and the stability for embedded patterns is quantitatively investigated.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 3; 237-249
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms
Autorzy:
Peteiro-Barral, D.
Guijarro-Berdiñas, B.
Pérez-Sánchez, B.
Powiązania:
https://bibliotekanauki.pl/articles/91888.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
artificial neural networks
genetic algorithm
Devonet algorithm
Opis:
It is a fact that traditional algorithms cannot look at a very large data set and plausibly find a good solution with reasonable requirements of computation (memory, time and communications). In this situation, distributed learning seems to be a promising line of research. It represents a natural manner for scaling up algorithms inasmuch as an increase of the amount of data can be compensated by an increase of the number of distributed locations in which the data is processed. Our contribution in this field is the algorithm Devonet, based on neural networks and genetic algorithms. It achieves fairly good performance but several limitations were reported in connection with its degradation in accuracy when working with heterogeneous data, i.e. the distribution of data is different among the locations. In this paper, we take into account this heterogeneity in order to propose several improvements of the algorithm, based on distributing the computation of the genetic algorithm. Results show a significative improvement of the performance of Devonet in terms of accuracy.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 1; 5-20
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decision making support system for managing advertisers by ad fraud detection
Autorzy:
Gabryel, Marcin
Scherer, Magdalena M.
Sułkowski, Łukasz
Damaševičius, Robertas
Powiązania:
https://bibliotekanauki.pl/articles/2031082.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
lead management
feedforward neural networks
embedding
online marketing
Opis:
Efficient lead management allows substantially enhancing online channel marketing programs. In the paper, we classify website traffic into human- and bot-origin ones. We use feedforward neural networks with embedding layers. Moreover, we use one-hot encoding for categorical data. The data of mouse clicks come from seven large retail stores and the data of lead classification from three financial institutions. The data are collected by a JavaScript code embedded into HTML pages. The three proposed models achieved relatively high accuracy in detecting artificially generated traffic.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 331--339
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying a neural network ensemble to intrusion detection
Autorzy:
Ludwig, Simone A.
Powiązania:
https://bibliotekanauki.pl/articles/91620.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
ensemble learning
Deep Neural Networks
NSL-KDD data set
Opis:
An intrusion detection system (IDS) is an important feature to employ in order to protect a system against network attacks. An IDS monitors the activity within a network of connected computers as to analyze the activity of intrusive patterns. In the event of an ‘attack’, the system has to respond appropriately. Different machine learning techniques have been applied in the past. These techniques fall either into the clustering or the classification category. In this paper, the classification method is used whereby a neural network ensemble method is employed to classify the different types of attacks. The neural network ensemble method consists of an autoencoder, a deep belief neural network, a deep neural network, and an extreme learning machine. The data used for the investigation is the NSL-KDD data set. In particular, the detection rate and false alarm rate among other measures (confusion matrix, classification accuracy, and AUC) of the implemented neural network ensemble are evaluated.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 3; 177-178
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A MLMVN with arbitrary complex-valued inputs and a hybrid testability approach for the extraction of lumped models using FRA
Autorzy:
Aizenberg, Igor
Luchetta, Antonio
Manetti, Stefano
Piccirilli, Maria Cristina
Powiązania:
https://bibliotekanauki.pl/articles/91696.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
analog circuits
complex-valued neural networks
lumped model
testability
Opis:
A procedure for the identification of lumped models of distributed parameter electromagnetic systems is presented in this paper. A Frequency Response Analysis (FRA) of the device to be modeled is performed, executing repeated measurements or intensive simulations. The method can be used to extract the values of the components. The fundamental brick of this architecture is a multi-valued neuron (MVN), used in a multilayer neural network (MLMVN); the neuron is modified in order to use arbitrary complex-valued inputs, which represent the frequency response of the device. It is shown that this modification requires just a slight change in the MLMVN learning algorithm. The method is tested over three completely different examples to clearly explain its generality.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 1; 5-19
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emerging modularity during the evolution of neural networks
Autorzy:
Praczyk, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2201327.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-evolution
modular neural networks
emergent modularity
hybrid algorithms
Opis:
Modularity is a feature of most small, medium and large–scale living organisms that has evolved over many years of evolution. A lot of artificial systems are also modular, however, in this case, the modularity is the most frequently a consequence of a handmade design process. Modular systems that emerge automatically, as a result of a learning process, are very rare. What is more, we do not know mechanisms which result in modularity. The main goal of the paper is to continue the work of other researchers on the origins of modularity, which is a form of optimal organization of matter, and the mechanisms that led to the spontaneous formation of modular living forms in the process of evolution in response to limited resources and environmental variability. The paper focuses on artificial neural networks and proposes a number of mechanisms operating at the genetic level, both those borrowed from the natural world and those designed by hand, the use of which may lead to network modularity and hopefully to an increase in their effectiveness. In addition, the influence of external factors on the shape of the networks, such as the variability of tasks and the conditions in which these tasks are performed, is also analyzed. The analysis is performed using the Hill Climb Assembler Encoding constructive neuro-evolutionary algorithm. The algorithm was extended with various module-oriented mechanisms and tested under various conditions. The aim of the tests was to investigate how individual mechanisms involved in the evolutionary process and factors external to this process affect modularity and efficiency of neural networks.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 2; 107--126
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of learners’ quality and diversity in collaborative clustering
Autorzy:
Rastin, Parisa
Matei, Basarab
Cabanes, Guénaël
Grozavu, Nistor
Bennani, Younés
Powiązania:
https://bibliotekanauki.pl/articles/91600.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
collaborative clustering
topological neural networks
unsupervised learning
diversity
quality
Opis:
Collaborative Clustering is a data mining task the aim of which is to use several clustering algorithms to analyze different aspects of the same data. The aim of collaborative clustering is to reveal the common underlying structure of data spread across multiple data sites by applying clustering techniques. The idea of collaborative clustering is that each collaborator shares some information about the segmentation (structure) of its local data and improve its own clustering with the information provided by the other learners. This paper analyses the impact of the quality and the diversity of the potential learners to the quality of the collaboration for topological collaborative clustering algorithms based on the learning of a Self-Organizing Map (SOM). Experimental analysis on real data-sets showed that the diversity between learners impact the quality of the collaboration. We also showed that some internal indexes of quality are a good estimator of the increase of quality due to the collaboration.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 2; 149-165
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of rough set–based hybrid classification systems in the case of missing values
Autorzy:
Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/2031102.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rough sets
support vector machine
fuzzy system
neural networks
Opis:
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 307-318
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability and dissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays
Autorzy:
Cao, Yang
Samidurai, R.
Sriraman, R.
Powiązania:
https://bibliotekanauki.pl/articles/91527.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
static neural networks
dissipativity analysis
Markovian jump
time-varying delays
Opis:
This paper studies the global asymptotic stability and dissipativity problem for a class of neutral type stochastic Markovian Jump Static Neural Networks (NTSMJSNNs) with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii Functional (LKF) with some augmented delay-dependent terms and by using integral inequalities to bound the derivative of the integral terms, some new sufficient conditions have been obtained, which ensure that the global asymptotic stability in the mean square. The results obtained in this paper are expressed in terms of Strict Linear Matrix Inequalities (LMIs), whose feasible solutions can be verified by effective MATLAB LMI control toolbox. Finally, examples and simulations are given to show the validity and advantages of the proposed results.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 3; 189-204
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New event based H∞ state estimation for discrete-time recurrent delayed semi-markov jump neural networks via a novel summation inequality
Autorzy:
Cao, Yang
Maheswari, K.
Dharan, S.
Sivaranjani, K.
Powiązania:
https://bibliotekanauki.pl/articles/2147136.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
discrete-time neural networks
mixed time delays
asymptotic stability
eventtriggered control
Opis:
This paper investigates the event-based state estimation for discrete-time recurrent delayed semi-Markovian neural networks. An event-triggering protocol is introduced to find measurement output with a specific triggering condition so as to lower the burden of the data communication. A novel summation inequality is established for the existence of asymptotic stability of the estimation error system. The problem addressed here is to construct an H∞ state estimation that guarantees the asymptotic stability with the novel summation inequality, characterized by event-triggered transmission. By the Lyapunov functional technique, the explicit expressions for the gain are established. Finally, two examples are exploited numerically to illustrate the usefulness of the new methodology.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 3; 207--227
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An intelligent approach to short-term wind power prediction using deep neural networks
Autorzy:
Niksa-Rynkiewicz, Tacjana
Stomma, Piotr
Witkowska, Anna
Rutkowska, Danuta
Słowik, Adam
Cpałka, Krzysztof
Jaworek-Korjakowska, Joanna
Kolendo, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/23944826.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
renewable energy
wind energy
wind power
wind turbine
short-term wind power prediction
deep learning
convolutional neural networks
gated recurrent unit
hierarchical multilayer perceptron
deep neural networks
Opis:
In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent Unit), and H-MLP (Hierarchical Multilayer Perceptron). The DNN architectures are part of the Deep Learning Prediction (DLP) framework that is applied in the Deep Learning Power Prediction System (DLPPS). The system is trained based on data that comes from a real wind farm. This is significant because the prediction results strongly depend on weather conditions in specific locations. The results obtained from the proposed system, for the real data, are presented and compared. The best result has been achieved for the GRU network. The key advantage of the system is a high effectiveness prediction using a minimal subset of parameters. The prediction of wind power in wind farms is very important as wind power capacity has shown a rapid increase, and has become a promising source of renewable energies.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 3; 197--210
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On training deep neural networks using a streaming approach
Autorzy:
Duda, Piotr
Jaworski, Maciej
Cader, Andrzej
Wang, Lipo
Powiązania:
https://bibliotekanauki.pl/articles/91796.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
deep learning
data streams
convolutional neural networks
strumienie danych
konwolucyjne sieci neuronowe
Opis:
In recent years, many deep learning methods, allowed for a significant improvement of systems based on artificial intelligence methods. Their effectiveness results from an ability to analyze large labeled datasets. The price for such high accuracy is the long training time, necessary to process such large amounts of data. On the other hand, along with the increase in the number of collected data, the field of data stream analysis was developed. It enables to process data immediately, with no need to store them. In this work, we decided to take advantage of the benefits of data streaming in order to accelerate the training of deep neural networks. The work includes an analysis of two approaches to network learning, presented on the background of traditional stochastic and batch-based methods.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 1; 15-26
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An arma type pi-sigma artificial neural network for nonlinear time series forecasting
Autorzy:
Akdeniz, E.
Egrioglu, E.
Bas, E.
Yolcu, U.
Powiązania:
https://bibliotekanauki.pl/articles/91816.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
high order artificial neural networks
pi-sigma neural network, forecasting
recurrent neural network
particle swarm optimization (PSO)
Opis:
Real-life time series have complex and non-linear structures. Artificial Neural Networks have been frequently used in the literature to analyze non-linear time series. High order artificial neural networks, in view of other artificial neural network types, are more adaptable to the data because of their expandable model order. In this paper, a new recurrent architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm based on particle swarm optimization is also used as a tool for the training of the proposed neural network. The proposed new high order artificial neural network is applied to three real life time series data and also a simulation study is performed for Istanbul Stock Exchange data set.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 121-132
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies