Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fuzzy sets" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations
Autorzy:
Sadiqbatcha, S.
Jafarzadeh, S.
Ampatzidis, Y.
Powiązania:
https://bibliotekanauki.pl/articles/91663.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
type-1 fuzzy sets
type-2 fuzzy sets
polynomial
exponential equation
particle swarm optimization (PSO)
Opis:
This paper proposes a modified particle swarm optimization (PSO) algorithm that can be used to solve a variety of fuzzy nonlinear equations, i.e. fuzzy polynomials and exponential equations. Fuzzy nonlinear equations are reduced to a number of interval nonlinear equations using alpha cuts. These equations are then sequentially solved using the proposed methodology. Finally, the membership functions of the fuzzy solutions are constructed using the interval results at each alpha cut. Unlike existing methods, the proposed algorithm does not impose any restriction on the fuzzy variables in the problem. It is designed to work for equations containing both positive and negative fuzzy sets and even for the cases when the support of the fuzzy sets extends across 0, which is a particularly problematic case.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 103-110
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An approach to generalization of the intuitionistic fuzzy topsis method in the framework of evidence theory
Autorzy:
Dymova, Ludmila
Kaczmarek, Krzysztof
Sevastjanov, Pavel
Sułkowski, Łukasz
Przybyszewski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2031132.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
TOPSIS
intuitionistic fuzzy sets
Dempster-Shafer theory
aggregating modes
Opis:
A generalization of technique for establishing order preference by similarity to the ideal solution (TOPSIS) in the intuitionistic fuzzy setting based on the redefinition of intuitionistic fuzzy sets theory (A−IFS) in the framework of Dempster-Shafer theory (DST) of evidence is proposed. The use of DST mathematical tools makes it possible to avoid a set of limitations and drawbacks revealed recently in the conventional Atanassov’s operational laws defined on intuitionistic fuzzy values, which may produce unacceptable results in the solution of multiple criteria decision-making problems. This boosts considerably the quality of aggregating operators used in the intuitionistic fuzzy TOPSIS method. It is pointed out that the conventional TOPSIS method may be naturally treated as a weighted sum of some modified local criteria. Because this aggregating approach does not always reflects well intentions of decision makers, two additional aggregating methods that cannot be defined in the framework of conventional A−IFS based on local criteria weights being intuitionistic fuzzy values, are introduced. Having in mind that different aggregating methods generally produce different alternative rankings to obtain the compromise ranking, the method for aggregating of aggregation modes has been applied. Some examples are used to illustrate the validity and features of the proposed approach.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 2; 157-175
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handwrittenword recognition using fuzzy matching degrees
Autorzy:
Wróbel, Michał
Starczewski, Janusz T.
Fijałkowska, Justyna
Siwocha, Agnieszka
Napoli, Christian
Powiązania:
https://bibliotekanauki.pl/articles/2031113.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
offline handwriting recognition
handwritten strokes
fuzzy matching degrees
interval type-2 fuzzy sets
decision trees
bigram frequency
Opis:
Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 3; 229-242
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Group decision making using interval-valued intuitionistic fuzzy soft matrix and confident weight of experts
Autorzy:
Das, S.
Kar, S.
Pal, T.
Powiązania:
https://bibliotekanauki.pl/articles/91665.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
multiple attribute group decision making
MAGDM
interval-valued intuitionistic fuzzy soft matrix
IVIFSM
interval-valued intuitionistic fuzzy soft sets
IVIFSSs
Opis:
This article proposes an algorithmic approach for multiple attribute group decision making (MAGDM) problems using interval-valued intuitionistic fuzzy soft matrix (IVIFSM) and confident weight of experts. We propose a novel concept for assigning confident weights to the experts based on cardinals of interval-valued intuitionistic fuzzy soft sets (IVIFSSs). The confident weight is assigned to each of the experts based on their preferred attributes and opinions, which reduces the chances of biasness. Instead of using medical knowledgebase, the proposed algorithm mainly relies on the set of attributes preferred by the group of experts. To make the set of preferred attributes more important, we use combined choice matrix, which is combined with the individual IVIFSM to produce the corresponding product IVIFSM. This article uses IVIFSMs for representing the experts’ opinions. IVIFSM is the matrix representation of IVIFSS and IVIFSS is a natural combination of interval-valued intuitionistic fuzzy set (IVIFS) and soft set. Finally, the performance of the proposed algorithm is validated using a case study from real life.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 1; 57-77
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of rough set–based hybrid classification systems in the case of missing values
Autorzy:
Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/2031102.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rough sets
support vector machine
fuzzy system
neural networks
Opis:
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 307-318
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies