Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Prognoza" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Multiple regression analysis model to predict and simulate winter rapeseed yield
Model analizy regresji wielorakiej dla prognozy i symulacji plonu rzepaku ozimego
Autorzy:
Niedbała, G.
Piekutowska, M.
Adamski, M.
Powiązania:
https://bibliotekanauki.pl/articles/336860.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
Forecast
multiple regression
MLR
winter rapeseed
yield prediction
prognoza
regresja wielokrotna
rzepak ozimy
prognoza plonu
Opis:
The aim of the work is to create a model for prediction and simulation of winter rapeseed yield. The model made it possible to perform a yield forecast on 30 June, directly before harvest in the current agrotechnical season. The prediction model was built using the multiple regression method (MLR). The model was based on meteorological data (air temperature and precipitation) and information about mineral fertilization. The data were collected from the years 2008-2017 from 291 production fields located in Poland, in the southern Opole region. The assessment of the quality of forecasts generated on the basis of the regression model was verified by determining prediction errors using RAE, RMS, MAE and MAPE error meters. An important feature of the created prediction model concerns the possibility of making the forecast in the current agrotechnical year on the basis of the current weather and fertilizer information.
Celem pracy było zbudowanie modelu do predykcji i symulacji plonu rzepaku ozimego. Model ten umożliwił wykonanie prognozy plonu na dzień 30 czerwca, bezpośrednio przed zbiorem w aktualnie trwającym sezonie agrotechnicznym. Do budowy modelu predykcyjnego użyto metody regresji wielorakiej (MLR). Model powstał w oparciu o dane meteorologiczne (temperatura powietrza i opady atmosferyczne) oraz informacje o nawożeniu mineralnym. Dane zostały zebrane z lat 2008- 2017 z 291 pól produkcyjnych zlokalizowanych w Polsce, na obszarze południowej Opolszczyzny. Ocena jakości prognoz wytworzonych na bazie modelu regresyjnego została zweryfikowana poprzez określenie błędów prognozy za pomocą mierników błędów RAE, RMS, MAE oraz MAPE. Ważną cechą wytworzonego modelu predykcyjnego jest możliwość wykonania prognozy w bieżącym roku agrotechnicznym w oparciu o aktualne informacje pogodowe i nawozowe.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 139-144
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody prognozowania wybranych zagadnień inżynerii rolniczej z wykorzystaniem sztucznych sieci neuronowych
The methods of predicting the issues of agricultural engineering with the use of artificial neural networks
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/335271.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
prognoza
artificial neural network
agricultural engineering
predicting
Opis:
Celem pracy było omówienie neuronowych metod prognozowania oraz porównanie ich efektywności w wybranych zagadnieniach inżynierii rolniczej przy użyciu sztucznych sieci neuronowych. Wskazano przy tym topologie sieci, które w rozwiązaniu problemów predykcyjnych charakteryzowały się najlepszą skutecznością.
The aim of the following thesis was the description of chosen methods of the prediction and the comparison of their efficiency in the field of agricultural engineering with the use of artificial neural networks. There were also pointed the typolgies of networks which turned out to be the most effective in the process of solving the prediction problems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 28-31
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting of the daily demand for natural gas in rural households using the methods of artificial intelligence. Part II. Forecasting using fuzzy logic
Prognozowanie dobowego zapotrzebowania na gaz ziemny wiejskich gospodarstw domowych przy wykorzystaniu metod sztucznej inteligencji. Cz. 2. Prognozowanie przy wykorzystaniu logiki rozmytej
Autorzy:
Małopolski, J.
Trojanowska, M.
Nęcka, K.
Powiązania:
https://bibliotekanauki.pl/articles/335847.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
natural gas
short-term forecasts
fuzzy logic
prognoza krótkookresowa
logika rozmyta
modele Takagi-Sugeno
Opis:
In this paper, two fuzzy Takagi-Sugeno models were built to describe daily gas consumption of rural households using the Gaussian and trapezoidal membership function. It was found that the predictive values of both models are similar and satis-factory (MAPE 5.3-5.5%) and slightly better than in the case of the model of neural network when the BFGS algorithm was used for training, as shown in the first section of the study.
W pracy przedstawiono zbudowane dwa rozmyte modele typu Takagi-Sugeno opisujące dobowe zużycie gazu przez wiejskie gospodarstwa domowe, wykorzystując gaussowską i trapezoidalną funkcję przynależności. Stwierdzono, że wartość predykcyjna obydwu modeli jest podobna oraz zadowalająca (MAPE rzędu 5,3-5,5%) i nieznacznie lepsza od modelu neuronowe-go, gdy do uczenia sieci zastosowano algorytm BFGS, a który przedstawiono w części I opracowania.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2015, 60, 2; 65-67
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of machine learning technique for short-term forecasting of demand for electricity
Wykorzystanie technik uczenia maszynowego do krótkoterminowego prognozowania zapotrzebowania na energię elektryczną
Autorzy:
Nęcka, K.
Powiązania:
https://bibliotekanauki.pl/articles/337635.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
data mining
electricity
machine learning
short-term forecasts
energia elektryczna
prognoza krótkoterminowa
uczenie maszynowe
Opis:
The study verifies the usefulness of selected machine learning techniques for predicting hourly demand for electricity within a short time period. The results of the performed analyses show that the lowest values for both the MAPE forecast error for the test set at the level of 17% and the lowest share of the balancing energy in the total consumption at a level which does not exceed 15% were obtained for models for which the input data included the averaged electricity consumption profile for characteristic days of the week, the forecast number of pure production pieces and the encoded day of the week and time of the day. Among the tested models, forecasts prepared on the basis of artificial neural networks and standard CRT trees were characterised by the best quality of predictions.
W pracy sprawdzono przydatność wybranych technik uczenia maszynowego do predykcji godzinowego zapotrzebowania na energię elektryczną w krótkim horyzoncie czasu. Z wykonanych analiz wynika, że najniższe wartości zarówno błędu prognozy MAPE na poziomie 17% jak i najniższy udział energii bilansującej w całkowitym zużyciu na poziomie nie przekraczającym 15% uzyskano dla modeli, dla których zmiennymi wejściowymi były uśredniony profil zużycia energii elektrycznej dla charakterystycznych dni tygodnia, prognozowana liczba sztuk czystej produkcji oraz zakodowany dzień tygodnia i godzina doby. Spośród badanych modeli najlepszą jakością predykcji charakteryzowały się prognozy opracowywane w oparciu o sztuczne sieci neuronowe oraz standardowe drzewa CRT.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2014, 59, 2; 71-74
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multiple linear regression for multi-criteria yield prediction of winter wheat
Zastosowanie analizy regresji wielorakiej dla wielokryterialnej prognozy plonów pszenicy ozimej
Autorzy:
Niedbała, G.
Powiązania:
https://bibliotekanauki.pl/articles/335462.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
forecast
multiple regression
MLR
winter wheat
yield prediction
prognoza
regresja wielokrotna
pszenica ozima
predykcja plonu
Opis:
The aim of the work was to produce three independent models for prediction and simulation of winter wheat yield, which were marked in the following way: ReWW15_04, ReWW31_05 and ReWW30_06. The produced models enable to make yield forecasts for April 15, May 31 and June 30, directly before harvest in the current agrotechnical season. For the construction of prediction models the Multiple Linear Regression (MLR) method was used. The models are based on meteorological data (air temperature and rainfall) and information on mineral fertilisation. The data were collected from 2008- 2015 from 301 production fields located in Poland, in the Wielkopolskie Voivodeship. Evaluation of the quality of forecasts based on MLR models was verified by determining forecast errors using RAE, RMS, MAE and MAPE error gauges. An important feature of the produced prediction model consists in the possibility of making a prediction in the current agrotechnical year on the basis of current weather and fertilizer information.
Celem pracy było wytworzenie trzech niezależnych modeli do predykcji i symulacji plonu pszenicy ozimej, które oznaczono w następujący sposób: ReWW15_04, ReWW31_05 and ReWW30_06. Wytworzone modele umożliwiają wykonanie prognozy plonu na dzień 15 kwietnia, 31 maja i 30 czerwca, bezpośrednio przed zbiorem w aktualnie trwającym sezonie agrotechnicznym. Do budowy modeli predykcyjnych użyto metody liniowej regresji wielorakiej (MLR). Modele powstały w oparciu o dane meteorologiczne (temperatura powietrza i opady atmosferyczne) oraz informacje o nawożeniu mineralnym. Dane zostały zebrane z lat 2008-2015 z 301 pól produkcyjnych zlokalizowanych w Polsce, na terenie województwa Wielkopolskiego. Ocena jakości prognoz wytworzonych na bazie modeli MLR została zweryfikowana poprzez określenie błędów prognozy za pomocą mierników błędów RAE, RMS, MAE oraz MAPE. Ważną cechą wytworzonego modelu predykcyjnego jest możliwość wykonania prognozy w bieżącym roku agrotechnicznym w oparciu o aktualne informacje pogodowe i nawozowe.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 125-131
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting of the daily demand for natural gas in rural households using the methods of artificial intelligence. Part I. Forecasting using artificial neural networks
Prognozowanie dobowego zapotrzebowania na gaz ziemny wiejskich gospodarstw domowych przy wykorzystaniu metod sztucznej inteligencji. Cz. 1. Prognozowanie przy wykorzystaniu sztucznych sieci neuronowych
Autorzy:
Nęcka, K.
Trojanowska, M.
Małopolski, J.
Powiązania:
https://bibliotekanauki.pl/articles/334058.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
natural gas
short-term forecasts
artificial neural networks
gaz ziemny
prognoza krótkookresowa
sztuczna sieć neuronowa
Opis:
The paper determines daily forecast demands for natural gas using artificial neural networks (MLPs). The influence of net-work structure, the type of activation function and the training process used on the quality of prediction were studied. It was found that the quality of forecasts was highly influenced by the network training algorithm. The smallest errors of the ex-pired forecasts (MAPE 5-6%) were obtained using the BFGS algorithm.
W trakcie badań wyznaczano dobowe prognozy zapotrzebowania na gaz ziemny z wykorzystaniem sztucznych sieci neuronowych MLP. Przebadano wpływ struktury sieci, rodzaju funkcji aktywacji oraz zastosowanego procesu uczenia sieci na jakość predykcji. Stwierdzono, że na jakość prognoz duży wpływ ma algorytm uczenia sieci. Najmniejsze błędy prognoz wygasłych (MAPE rzędu 5-6%) uzyskano stosując algorytm BFGS.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2015, 60, 2; 62-64
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowy system komputerowy prognozujący poziom emisji amoniaku po nawożeniu gnojowicą
Neuronal computer system for forecast ammonia emission after applied liquid manure
Autorzy:
Niżewski, P.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337155.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
gnojowica
nawożenie
amoniak
emisja
prognoza
neuronowy system komputerowy
liquid manure
fertilizer
emission
ammonia
neuronal computer system
Opis:
Genezą podjęcia tematu są głębokie zmiany zachodzących w gospodarce nawozami naturalnymi w ostatnich latach w Polsce. Wiąże się to zwłaszcza z intensyfikacją produkcji i przestawiania się wielu gospodarstw z hodowli obornikowej na gnojowicową, niekorzystną dla środowiska naturalnego. Sytuacja ta jest powodem opracowania narzędzia pozwalającego na oszacowanie poziomu emisji amoniaku do atmosfery podczas nawożenia gnojowicą. Dzięki identyfikacji głównych czynników zwiększających emisję, narzędzie to będzie przydatne również do redukcji jej wielkości.
The origin of undertaking this subject is related with the deep changes observed in manure management in Poland during last years. This is caused by intensification of animal production and changing the type of production from solid to liquid manure, which is unfovourable for agro-ecosystems. This situation is a base for creation of tool permissing the estimation of ammonia emission level during applied liquid manure. By Identification of the main factors raising the emission level, this tool will be used also for reduction of NH3 losses.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 44-47
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody wizualno-rezystograficznej w badaniu stanu zdrowotnego i prognozowaniu zagrożeń wywieranych przez klon pospolity na obszarach zurbanizowanych
Application of visually-resistographic method in the investigation of health state and anticipating the threats exerted by acer platanoides on urbanized areas
Autorzy:
Jurga, J.
Powiązania:
https://bibliotekanauki.pl/articles/336799.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
klon pospolity
obszar zurbanizowany
prognoza
zagrożenie
metoda wizualno-rezystograficzna
stan zdrowotny
visually-resistographic method
health state
threat
prognose
urbanized area
acer platanoides
Opis:
W pracy przedstawiono wyniki oceny stanu zdrowotnego drzew rosnących w bezpośrednim sąsiedztwie miejskiej trasy komunikacyjnej. W badaniach zastosowano metodę wizualną poszerzoną o rezystograficzny pomiar stanu wewnętrznego tkanki żywej i obumarłej. Przeprowadzono badania 7 okazów klonu pospolitego, które wcześniej, w oparciu o dotychczasowy tok postępowania, zostały przeznaczone do usunięcia. Na podstawie przeprowadzonych badań stwierdzono, że 5 spośród zakwalifikowanych do usunięcia drzew nie stanowi zagrożenia dla otoczenia i wymaga jedynie przeprowadzenia zabiegów.
The results of opinion of health state of trees growing in direct neighborhood of municipal communication rout were presented in the article. The visual method complemented by resistographic measurement of internal state of both alive and dead tissue was used in investigations. During investigation 7 items of acer platanoides, which, on the ground of earlier proceedings had been qualified to removal, were tested. On the basis of conducted investigations it was stated, that 5 from trees classified to removal do not make up the threats for surroundings and require caring interventions only.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 2; 35-38
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies