Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "MID" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Effective Measyrand Estimators for Samples of Trapezoidal PDF-s
Autorzy:
Warsza, Z. L.
Powiązania:
https://bibliotekanauki.pl/articles/384747.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
estimators of probability density function
trapezoidal PDF
mid-range
uncertainty evaluation
Opis:
This paper is final overview of investigations on the accuracy of basic estimators of trapezoidal probability distribution samples of the measured data. For symmetrical trapezoidal PDF of straight as well concaved sides, using Monte-Carlo method of simulation, the standard deviation (SD) of linear 1- and 2-component estimators are evaluated. Approaches for theirs evaluation are proposed. It is established that in the ratio of upper and bottom bases of trapezoidal PDF in the range from 1 to 0,35 the mid-range value has smaller standard deviation (SD) than the mean value and median. It is find then for the whole family of the symmetric linear trapezoidal PDF more accurate than above single element estimators are two-component (2C) estimators as the linear form of the mean and mid-range values of the sample. Their coefficients are found, properties discussed and formulas of SD are given. The new simplified 2C-estimator of equal coefficients is also proposed. These estimators successfully extend estimation of the measurand value as the sample mean and description of its accuracy by the uncertainty type A recommended by the international guides of uncertainty evaluation in measurement GUM-2008 [1], EA-4/02 [2] and by Handbook NASA [3]. Approaches of described below investigations could be effectively applied also for other models of convoluted PDF-s.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2012, 6, 1; 8-14
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod odpornościowych w analizie dokładności pomiarów międzylaboratoryjnych (2) Ocena niepewności pomiarów metodą odporną Algorytm S
Application of Robust Methods in Evaluation the Accuracy of Interlaboratory Measurements Part 2. Estimation of the Measurement Uncertainty by Robust Method Algorithm S
Autorzy:
Warsza, Z. L.
Volodarsky, E. T.
Powiązania:
https://bibliotekanauki.pl/articles/274794.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
odporne statystyki
wartości odstające
outlier
niepewność pomiaru
wspólny eksperyment
outliers
uncertainty of measurements
standard deviation
median
robust mean value
interquartile mid-range
Opis:
W artykule omówiono iteracyjną metodę odporną Algorytm S. Stosuje się ją do oszacowania precyzji określonej metody pomiarowej na podstawie wyników badań jednorodnych obiektów w wielu akredytowanych laboratoriach, gdy oceny dokładności pomiarów w niektórych z nich są odstające. Wypadkową odporną ocenę dokładności badanej metody znajduje się na podstawie oszacowania niepewności lub rozstępu wyników pomiarów tą metodą w każdym z laboratoriów, bez odrzucania danych odstających. Rozważania zilustrowano przykładem liczbowym.
This two-part paper discusses the use of robust statistics to assess the value and uncertainty of measurand obtained from a sample of experimental data when some of these data differ significantly from the others, i.e. are outliers. The statistical parameters of the measurement result are determined by robust methods from all data, but influence of outliers is treated differently. For small sample sizes results are more reliable than obtained by classical methods with exclusions of outliers. This is illustrated by examples from the interlaboratory key comparisons. Part 1 discusses the basic principles of the robust statistics and the iterative robust method given by Huber, which is called Algorithm A in ISO 5725-5. As illustration in the simulated numerical example, the uncertainty of some measurement method was estimated based on measurements of homogeneous object in several accredited laboratories. The mean uncertainty of this experiment is estimated by classic method for all data and with exclusion of outliers and by two robust methods: rescaled median deviation and by Algorithm A. The result of last method is the most reliable.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 3; 45-51
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod odpornościowych w analizie dokładności pomiarów międzylaboratoryjnych (1). Zasady statystyki odpornościowej, metoda Hubera czyli Algorytm A
Application of Robust Methods in Evaluation the Accuracy of Interlaboratory Measurements. Part 1. Bases of Robust Statistics. Huber Method, i.e. Algorithm A
Autorzy:
Warsza, Z. L.
Volodarsky, E. T.
Powiązania:
https://bibliotekanauki.pl/articles/276805.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
outlier
niepewność pomiaru
odchylenie standardowe
mediana
odporna wartość średnia
rozstęp międzykwartylowy
outliers
uncertainty of measurements
standard deviation
median
robust mean value
interquartile mid-range
Opis:
W dwuczęściowej pracy omówiono zastosowanie statystyki odpornościowej do oceny wartości i niepewności menzurandu uzyskiwanych na podstawie próbki danych doświadczalnych, gdy niektóre z tych danych różnią się istotnie od pozostałych, czyli są outlierami. Metodami odpornościowymi wyznaczono parametry statystyczne wyniku pomiaru ze wszystkich danych, ale wpływ outlierów potraktowano odmiennie. Dla próbek o niewielkiej liczności uzyskano wyniki bardziej wiarygodne niż w sposób klasyczny z odrzuceniem outlierów. Ilustrują to przykłady z porównań międzylaboratoryjnych. W części 1. omówiono podstawowe zasady statystyki odpornościowej oraz iteracyjną metodę odporną podaną przez Hubera, którą w normie ISO 5725-5 nazwano Algorytm A. Jako ilustrację, w symulowanym przykładzie liczbowym, wyznaczono niepewność procedury pomiarowej testowanej przez porównanie wyników badania jednorodnych obiektów w kilku laboratoriach akredytowanych. Oszacowano średnią niepewność metodą klasyczną dla wszystkich danych. Po usunięciu outlierów zastosowano dwie metody odpornościowe – przeskalowanego odchylenia medianowego MADS i metodę Hubera, czyli iteracyjny Algorytm A, którego wyniki były najbardziej wiarygodne.
This two-part paper discusses the use of robust statistics to assess the value and uncertainty of measurand obtained from a sample of experimental data when some of these data differ significantly from the others, i.e. are outliers. The statistical parameters of the measurement result are determined by robust methods from all data, but influence of outliers is treated differently. For small sample sizes results are more reliable than obtained by classical methods with exclusions of outliers. This is illustrated by examples from the interlaboratory key comparisons. Part 1 discusses the basic principles of the robust statistics and the iterative robust method given by Huber, which is called Algorithm A in ISO 5725-5. As illustration in the simulated numerical example, the uncertainty of some measurement method was estimated based on measurements of homogeneous object in several accredited laboratories. The mean uncertainty of this experiment is estimated by classic method for all data and with exclusion of outliers and by two robust methods: rescaled median deviation and by Algorithm-A. The result of last method is the most reliable.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 2; 47-55
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies